This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a prime divides a nonnegative power of another, then they are equal. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsexpr | |- ( ( P e. Prime /\ Q e. Prime /\ N e. NN0 ) -> ( P || ( Q ^ N ) -> P = Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | prmdvdsexpb | |- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |
|
| 3 | 2 | biimpd | |- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) -> P = Q ) ) |
| 4 | 3 | 3expia | |- ( ( P e. Prime /\ Q e. Prime ) -> ( N e. NN -> ( P || ( Q ^ N ) -> P = Q ) ) ) |
| 5 | prmnn | |- ( Q e. Prime -> Q e. NN ) |
|
| 6 | 5 | adantl | |- ( ( P e. Prime /\ Q e. Prime ) -> Q e. NN ) |
| 7 | 6 | nncnd | |- ( ( P e. Prime /\ Q e. Prime ) -> Q e. CC ) |
| 8 | 7 | exp0d | |- ( ( P e. Prime /\ Q e. Prime ) -> ( Q ^ 0 ) = 1 ) |
| 9 | 8 | breq2d | |- ( ( P e. Prime /\ Q e. Prime ) -> ( P || ( Q ^ 0 ) <-> P || 1 ) ) |
| 10 | nprmdvds1 | |- ( P e. Prime -> -. P || 1 ) |
|
| 11 | 10 | pm2.21d | |- ( P e. Prime -> ( P || 1 -> P = Q ) ) |
| 12 | 11 | adantr | |- ( ( P e. Prime /\ Q e. Prime ) -> ( P || 1 -> P = Q ) ) |
| 13 | 9 12 | sylbid | |- ( ( P e. Prime /\ Q e. Prime ) -> ( P || ( Q ^ 0 ) -> P = Q ) ) |
| 14 | oveq2 | |- ( N = 0 -> ( Q ^ N ) = ( Q ^ 0 ) ) |
|
| 15 | 14 | breq2d | |- ( N = 0 -> ( P || ( Q ^ N ) <-> P || ( Q ^ 0 ) ) ) |
| 16 | 15 | imbi1d | |- ( N = 0 -> ( ( P || ( Q ^ N ) -> P = Q ) <-> ( P || ( Q ^ 0 ) -> P = Q ) ) ) |
| 17 | 13 16 | syl5ibrcom | |- ( ( P e. Prime /\ Q e. Prime ) -> ( N = 0 -> ( P || ( Q ^ N ) -> P = Q ) ) ) |
| 18 | 4 17 | jaod | |- ( ( P e. Prime /\ Q e. Prime ) -> ( ( N e. NN \/ N = 0 ) -> ( P || ( Q ^ N ) -> P = Q ) ) ) |
| 19 | 1 18 | biimtrid | |- ( ( P e. Prime /\ Q e. Prime ) -> ( N e. NN0 -> ( P || ( Q ^ N ) -> P = Q ) ) ) |
| 20 | 19 | 3impia | |- ( ( P e. Prime /\ Q e. Prime /\ N e. NN0 ) -> ( P || ( Q ^ N ) -> P = Q ) ) |