This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcprmpw | |- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 2 | 1 | adantr | |- ( ( P e. Prime /\ A e. NN ) -> P e. ZZ ) |
| 3 | zexpcl | |- ( ( P e. ZZ /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) |
|
| 4 | 2 3 | sylan | |- ( ( ( P e. Prime /\ A e. NN ) /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) |
| 5 | iddvds | |- ( ( P ^ n ) e. ZZ -> ( P ^ n ) || ( P ^ n ) ) |
|
| 6 | 4 5 | syl | |- ( ( ( P e. Prime /\ A e. NN ) /\ n e. NN0 ) -> ( P ^ n ) || ( P ^ n ) ) |
| 7 | breq1 | |- ( A = ( P ^ n ) -> ( A || ( P ^ n ) <-> ( P ^ n ) || ( P ^ n ) ) ) |
|
| 8 | 6 7 | syl5ibrcom | |- ( ( ( P e. Prime /\ A e. NN ) /\ n e. NN0 ) -> ( A = ( P ^ n ) -> A || ( P ^ n ) ) ) |
| 9 | 8 | reximdva | |- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A = ( P ^ n ) -> E. n e. NN0 A || ( P ^ n ) ) ) |
| 10 | pcprmpw2 | |- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
|
| 11 | 9 10 | sylibd | |- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A = ( P ^ n ) -> A = ( P ^ ( P pCnt A ) ) ) ) |
| 12 | pccl | |- ( ( P e. Prime /\ A e. NN ) -> ( P pCnt A ) e. NN0 ) |
|
| 13 | oveq2 | |- ( n = ( P pCnt A ) -> ( P ^ n ) = ( P ^ ( P pCnt A ) ) ) |
|
| 14 | 13 | rspceeqv | |- ( ( ( P pCnt A ) e. NN0 /\ A = ( P ^ ( P pCnt A ) ) ) -> E. n e. NN0 A = ( P ^ n ) ) |
| 15 | 14 | ex | |- ( ( P pCnt A ) e. NN0 -> ( A = ( P ^ ( P pCnt A ) ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
| 16 | 12 15 | syl | |- ( ( P e. Prime /\ A e. NN ) -> ( A = ( P ^ ( P pCnt A ) ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
| 17 | 11 16 | impbid | |- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |