This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate version of pgpfi . (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pgpfi.1 | |- X = ( Base ` G ) |
|
| Assertion | pgpfi2 | |- ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgpfi.1 | |- X = ( Base ` G ) |
|
| 2 | 1 | pgpfi | |- ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) ) |
| 3 | id | |- ( P e. Prime -> P e. Prime ) |
|
| 4 | 1 | grpbn0 | |- ( G e. Grp -> X =/= (/) ) |
| 5 | hashnncl | |- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
|
| 6 | 4 5 | syl5ibrcom | |- ( G e. Grp -> ( X e. Fin -> ( # ` X ) e. NN ) ) |
| 7 | 6 | imp | |- ( ( G e. Grp /\ X e. Fin ) -> ( # ` X ) e. NN ) |
| 8 | pcprmpw | |- ( ( P e. Prime /\ ( # ` X ) e. NN ) -> ( E. n e. NN0 ( # ` X ) = ( P ^ n ) <-> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
|
| 9 | 3 7 8 | syl2anr | |- ( ( ( G e. Grp /\ X e. Fin ) /\ P e. Prime ) -> ( E. n e. NN0 ( # ` X ) = ( P ^ n ) <-> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 10 | 9 | pm5.32da | |- ( ( G e. Grp /\ X e. Fin ) -> ( ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |
| 11 | 2 10 | bitrd | |- ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |