This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group is a P -group if every element has some power of P as its order. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ispgp.1 | |- X = ( Base ` G ) |
|
| ispgp.2 | |- O = ( od ` G ) |
||
| Assertion | ispgp | |- ( P pGrp G <-> ( P e. Prime /\ G e. Grp /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispgp.1 | |- X = ( Base ` G ) |
|
| 2 | ispgp.2 | |- O = ( od ` G ) |
|
| 3 | simpr | |- ( ( p = P /\ g = G ) -> g = G ) |
|
| 4 | 3 | fveq2d | |- ( ( p = P /\ g = G ) -> ( Base ` g ) = ( Base ` G ) ) |
| 5 | 4 1 | eqtr4di | |- ( ( p = P /\ g = G ) -> ( Base ` g ) = X ) |
| 6 | 3 | fveq2d | |- ( ( p = P /\ g = G ) -> ( od ` g ) = ( od ` G ) ) |
| 7 | 6 2 | eqtr4di | |- ( ( p = P /\ g = G ) -> ( od ` g ) = O ) |
| 8 | 7 | fveq1d | |- ( ( p = P /\ g = G ) -> ( ( od ` g ) ` x ) = ( O ` x ) ) |
| 9 | simpl | |- ( ( p = P /\ g = G ) -> p = P ) |
|
| 10 | 9 | oveq1d | |- ( ( p = P /\ g = G ) -> ( p ^ n ) = ( P ^ n ) ) |
| 11 | 8 10 | eqeq12d | |- ( ( p = P /\ g = G ) -> ( ( ( od ` g ) ` x ) = ( p ^ n ) <-> ( O ` x ) = ( P ^ n ) ) ) |
| 12 | 11 | rexbidv | |- ( ( p = P /\ g = G ) -> ( E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) <-> E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |
| 13 | 5 12 | raleqbidv | |- ( ( p = P /\ g = G ) -> ( A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) <-> A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |
| 14 | df-pgp | |- pGrp = { <. p , g >. | ( ( p e. Prime /\ g e. Grp ) /\ A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) ) } |
|
| 15 | 13 14 | brab2a | |- ( P pGrp G <-> ( ( P e. Prime /\ G e. Grp ) /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |
| 16 | df-3an | |- ( ( P e. Prime /\ G e. Grp /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) <-> ( ( P e. Prime /\ G e. Grp ) /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |
|
| 17 | 15 16 | bitr4i | |- ( P pGrp G <-> ( P e. Prime /\ G e. Grp /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |