This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse to pgpfi1 . A finite group is a P -group iff it has size some power of P . (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pgpfi.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| Assertion | pgpfi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgpfi.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) | |
| 3 | 1 2 | ispgp | ⊢ ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) |
| 4 | simprl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑃 ∈ ℙ ) | |
| 5 | 1 | grpbn0 | ⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑋 ≠ ∅ ) |
| 7 | hashnncl | ⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) | |
| 8 | 7 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 9 | 6 8 | mpbird | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 10 | 4 9 | pccld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ) |
| 11 | 10 | nn0red | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℝ ) |
| 12 | 11 | leidd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 13 | 10 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) |
| 14 | pcid | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) | |
| 15 | 4 13 14 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 16 | 12 15 | breqtrrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 18 | simpr | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) | |
| 19 | 18 | oveq1d | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 20 | 18 | oveq1d | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) = ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 21 | 17 19 20 | 3brtr4d | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 22 | simp-4l | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝐺 ∈ Grp ) | |
| 23 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑋 ∈ Fin ) | |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑋 ∈ Fin ) |
| 25 | simplr | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑝 ∈ ℙ ) | |
| 26 | simpr | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) | |
| 27 | 1 2 | odcau | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → ∃ 𝑔 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) |
| 28 | 22 24 25 26 27 | syl31anc | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → ∃ 𝑔 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) |
| 29 | 25 | adantr | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∈ ℙ ) |
| 30 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 31 | iddvds | ⊢ ( 𝑝 ∈ ℤ → 𝑝 ∥ 𝑝 ) | |
| 32 | 29 30 31 | 3syl | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∥ 𝑝 ) |
| 33 | simprr | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) | |
| 34 | 32 33 | breqtrrd | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∥ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) |
| 35 | simplrr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) | |
| 36 | fveqeq2 | ⊢ ( 𝑥 = 𝑔 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) ) | |
| 37 | 36 | rexbidv | ⊢ ( 𝑥 = 𝑔 → ( ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ↔ ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) ) |
| 38 | 37 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ∧ 𝑔 ∈ 𝑋 ) → ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) |
| 39 | 35 38 | sylan | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑔 ∈ 𝑋 ) → ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) |
| 40 | 39 | ad2ant2r | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) |
| 41 | 4 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑃 ∈ ℙ ) |
| 42 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 43 | 29 42 | syl | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∈ ℕ ) |
| 44 | 33 43 | eqeltrd | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ∈ ℕ ) |
| 45 | pcprmpw | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ∈ ℕ ) → ( ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) ) | |
| 46 | 41 44 45 | syl2anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) ) |
| 47 | 40 46 | mpbid | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
| 48 | 34 47 | breqtrd | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
| 49 | 41 44 | pccld | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ∈ ℕ0 ) |
| 50 | prmdvdsexpr | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ∈ ℕ0 ) → ( 𝑝 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) → 𝑝 = 𝑃 ) ) | |
| 51 | 29 41 49 50 | syl3anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( 𝑝 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) → 𝑝 = 𝑃 ) ) |
| 52 | 48 51 | mpd | ⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 = 𝑃 ) |
| 53 | 28 52 | rexlimddv | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑝 = 𝑃 ) |
| 54 | 53 | ex | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ♯ ‘ 𝑋 ) → 𝑝 = 𝑃 ) ) |
| 55 | 54 | necon3ad | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ≠ 𝑃 → ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ) |
| 56 | 55 | imp | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) |
| 57 | simplr | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 𝑝 ∈ ℙ ) | |
| 58 | 9 | ad2antrr | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 59 | pceq0 | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = 0 ↔ ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ) | |
| 60 | 57 58 59 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = 0 ↔ ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ) |
| 61 | 56 60 | mpbird | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = 0 ) |
| 62 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 63 | 62 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑃 ∈ ℕ ) |
| 64 | 63 10 | nnexpcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℕ ) |
| 65 | 64 | ad2antrr | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℕ ) |
| 66 | 57 65 | pccld | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℕ0 ) |
| 67 | 66 | nn0ge0d | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 0 ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 68 | 61 67 | eqbrtrd | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 69 | 21 68 | pm2.61dane | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 70 | 69 | ralrimiva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 71 | hashcl | ⊢ ( 𝑋 ∈ Fin → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) | |
| 72 | 71 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
| 73 | 72 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
| 74 | 64 | nnzd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℤ ) |
| 75 | pc2dvds | ⊢ ( ( ( ♯ ‘ 𝑋 ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℤ ) → ( ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) | |
| 76 | 73 74 75 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
| 77 | 70 76 | mpbird | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 78 | oveq2 | ⊢ ( 𝑛 = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) | |
| 79 | 78 | breq2d | ⊢ ( 𝑛 = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) → ( ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 80 | 79 | rspcev | ⊢ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 81 | 10 77 80 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 82 | pcprmpw2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) | |
| 83 | pcprmpw | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) | |
| 84 | 82 83 | bitr4d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 85 | 4 9 84 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 86 | 81 85 | mpbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 87 | 4 86 | jca | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 88 | 87 | 3adantr2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 89 | 88 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 90 | 3 89 | biimtrid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 91 | 1 | pgpfi1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → 𝑃 pGrp 𝐺 ) ) |
| 92 | 91 | 3expia | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → ( 𝑛 ∈ ℕ0 → ( ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → 𝑃 pGrp 𝐺 ) ) ) |
| 93 | 92 | rexlimdv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → 𝑃 pGrp 𝐺 ) ) |
| 94 | 93 | expimpd | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) → 𝑃 pGrp 𝐺 ) ) |
| 95 | 94 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) → 𝑃 pGrp 𝐺 ) ) |
| 96 | 90 95 | impbid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |