This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There are zero powers of a prime P in N iff P does not divide N . (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pceq0 | |- ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) = 0 <-> -. P || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcelnn | |- ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) e. NN <-> P || N ) ) |
|
| 2 | pccl | |- ( ( P e. Prime /\ N e. NN ) -> ( P pCnt N ) e. NN0 ) |
|
| 3 | nnne0 | |- ( ( P pCnt N ) e. NN -> ( P pCnt N ) =/= 0 ) |
|
| 4 | elnn0 | |- ( ( P pCnt N ) e. NN0 <-> ( ( P pCnt N ) e. NN \/ ( P pCnt N ) = 0 ) ) |
|
| 5 | 4 | biimpi | |- ( ( P pCnt N ) e. NN0 -> ( ( P pCnt N ) e. NN \/ ( P pCnt N ) = 0 ) ) |
| 6 | 5 | ord | |- ( ( P pCnt N ) e. NN0 -> ( -. ( P pCnt N ) e. NN -> ( P pCnt N ) = 0 ) ) |
| 7 | 6 | necon1ad | |- ( ( P pCnt N ) e. NN0 -> ( ( P pCnt N ) =/= 0 -> ( P pCnt N ) e. NN ) ) |
| 8 | 3 7 | impbid2 | |- ( ( P pCnt N ) e. NN0 -> ( ( P pCnt N ) e. NN <-> ( P pCnt N ) =/= 0 ) ) |
| 9 | 2 8 | syl | |- ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) e. NN <-> ( P pCnt N ) =/= 0 ) ) |
| 10 | 1 9 | bitr3d | |- ( ( P e. Prime /\ N e. NN ) -> ( P || N <-> ( P pCnt N ) =/= 0 ) ) |
| 11 | 10 | necon2bbid | |- ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) = 0 <-> -. P || N ) ) |