This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by Fan Zheng, 3-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1nprm | |- -. 1 e. Prime |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn | |- 1 e. NN |
|
| 2 | eleq1 | |- ( z = 1 -> ( z e. NN <-> 1 e. NN ) ) |
|
| 3 | 1 2 | mpbiri | |- ( z = 1 -> z e. NN ) |
| 4 | nnnn0 | |- ( z e. NN -> z e. NN0 ) |
|
| 5 | dvds1 | |- ( z e. NN0 -> ( z || 1 <-> z = 1 ) ) |
|
| 6 | 4 5 | syl | |- ( z e. NN -> ( z || 1 <-> z = 1 ) ) |
| 7 | 6 | bicomd | |- ( z e. NN -> ( z = 1 <-> z || 1 ) ) |
| 8 | 3 7 | biadanii | |- ( z = 1 <-> ( z e. NN /\ z || 1 ) ) |
| 9 | velsn | |- ( z e. { 1 } <-> z = 1 ) |
|
| 10 | breq1 | |- ( n = z -> ( n || 1 <-> z || 1 ) ) |
|
| 11 | 10 | elrab | |- ( z e. { n e. NN | n || 1 } <-> ( z e. NN /\ z || 1 ) ) |
| 12 | 8 9 11 | 3bitr4ri | |- ( z e. { n e. NN | n || 1 } <-> z e. { 1 } ) |
| 13 | 12 | eqriv | |- { n e. NN | n || 1 } = { 1 } |
| 14 | 1ex | |- 1 e. _V |
|
| 15 | 14 | ensn1 | |- { 1 } ~~ 1o |
| 16 | 13 15 | eqbrtri | |- { n e. NN | n || 1 } ~~ 1o |
| 17 | 1sdom2 | |- 1o ~< 2o |
|
| 18 | ensdomtr | |- ( ( { n e. NN | n || 1 } ~~ 1o /\ 1o ~< 2o ) -> { n e. NN | n || 1 } ~< 2o ) |
|
| 19 | 16 17 18 | mp2an | |- { n e. NN | n || 1 } ~< 2o |
| 20 | sdomnen | |- ( { n e. NN | n || 1 } ~< 2o -> -. { n e. NN | n || 1 } ~~ 2o ) |
|
| 21 | 19 20 | ax-mp | |- -. { n e. NN | n || 1 } ~~ 2o |
| 22 | isprm | |- ( 1 e. Prime <-> ( 1 e. NN /\ { n e. NN | n || 1 } ~~ 2o ) ) |
|
| 23 | 1 22 | mpbiran | |- ( 1 e. Prime <-> { n e. NN | n || 1 } ~~ 2o ) |
| 24 | 21 23 | mtbir | |- -. 1 e. Prime |