This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcmpt.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) |
|
| pcmpt.2 | |- ( ph -> A. n e. Prime A e. NN0 ) |
||
| Assertion | pcmptcl | |- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcmpt.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) |
|
| 2 | pcmpt.2 | |- ( ph -> A. n e. Prime A e. NN0 ) |
|
| 3 | pm2.27 | |- ( n e. Prime -> ( ( n e. Prime -> A e. NN0 ) -> A e. NN0 ) ) |
|
| 4 | iftrue | |- ( n e. Prime -> if ( n e. Prime , ( n ^ A ) , 1 ) = ( n ^ A ) ) |
|
| 5 | 4 | adantr | |- ( ( n e. Prime /\ A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) = ( n ^ A ) ) |
| 6 | prmnn | |- ( n e. Prime -> n e. NN ) |
|
| 7 | nnexpcl | |- ( ( n e. NN /\ A e. NN0 ) -> ( n ^ A ) e. NN ) |
|
| 8 | 6 7 | sylan | |- ( ( n e. Prime /\ A e. NN0 ) -> ( n ^ A ) e. NN ) |
| 9 | 5 8 | eqeltrd | |- ( ( n e. Prime /\ A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) |
| 10 | 9 | ex | |- ( n e. Prime -> ( A e. NN0 -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) |
| 11 | 3 10 | syld | |- ( n e. Prime -> ( ( n e. Prime -> A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) |
| 12 | iffalse | |- ( -. n e. Prime -> if ( n e. Prime , ( n ^ A ) , 1 ) = 1 ) |
|
| 13 | 1nn | |- 1 e. NN |
|
| 14 | 12 13 | eqeltrdi | |- ( -. n e. Prime -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) |
| 15 | 14 | a1d | |- ( -. n e. Prime -> ( ( n e. Prime -> A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) |
| 16 | 11 15 | pm2.61i | |- ( ( n e. Prime -> A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) |
| 17 | 16 | a1d | |- ( ( n e. Prime -> A e. NN0 ) -> ( n e. NN -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) |
| 18 | 17 | ralimi2 | |- ( A. n e. Prime A e. NN0 -> A. n e. NN if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) |
| 19 | 2 18 | syl | |- ( ph -> A. n e. NN if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) |
| 20 | 1 | fmpt | |- ( A. n e. NN if ( n e. Prime , ( n ^ A ) , 1 ) e. NN <-> F : NN --> NN ) |
| 21 | 19 20 | sylib | |- ( ph -> F : NN --> NN ) |
| 22 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 23 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 24 | 21 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. NN ) |
| 25 | nnmulcl | |- ( ( k e. NN /\ p e. NN ) -> ( k x. p ) e. NN ) |
|
| 26 | 25 | adantl | |- ( ( ph /\ ( k e. NN /\ p e. NN ) ) -> ( k x. p ) e. NN ) |
| 27 | 22 23 24 26 | seqf | |- ( ph -> seq 1 ( x. , F ) : NN --> NN ) |
| 28 | 21 27 | jca | |- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |