This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcidlem | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( P e. Prime /\ A e. NN0 ) -> P e. Prime ) |
|
| 2 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 3 | 1 2 | syl | |- ( ( P e. Prime /\ A e. NN0 ) -> P e. NN ) |
| 4 | simpr | |- ( ( P e. Prime /\ A e. NN0 ) -> A e. NN0 ) |
|
| 5 | 3 4 | nnexpcld | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ A ) e. NN ) |
| 6 | 1 5 | pccld | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) e. NN0 ) |
| 7 | 6 | nn0red | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) e. RR ) |
| 8 | 7 | leidd | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) <_ ( P pCnt ( P ^ A ) ) ) |
| 9 | 5 | nnzd | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ A ) e. ZZ ) |
| 10 | pcdvdsb | |- ( ( P e. Prime /\ ( P ^ A ) e. ZZ /\ ( P pCnt ( P ^ A ) ) e. NN0 ) -> ( ( P pCnt ( P ^ A ) ) <_ ( P pCnt ( P ^ A ) ) <-> ( P ^ ( P pCnt ( P ^ A ) ) ) || ( P ^ A ) ) ) |
|
| 11 | 1 9 6 10 | syl3anc | |- ( ( P e. Prime /\ A e. NN0 ) -> ( ( P pCnt ( P ^ A ) ) <_ ( P pCnt ( P ^ A ) ) <-> ( P ^ ( P pCnt ( P ^ A ) ) ) || ( P ^ A ) ) ) |
| 12 | 8 11 | mpbid | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) || ( P ^ A ) ) |
| 13 | 3 6 | nnexpcld | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) e. NN ) |
| 14 | 13 | nnzd | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) e. ZZ ) |
| 15 | dvdsle | |- ( ( ( P ^ ( P pCnt ( P ^ A ) ) ) e. ZZ /\ ( P ^ A ) e. NN ) -> ( ( P ^ ( P pCnt ( P ^ A ) ) ) || ( P ^ A ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) <_ ( P ^ A ) ) ) |
|
| 16 | 14 5 15 | syl2anc | |- ( ( P e. Prime /\ A e. NN0 ) -> ( ( P ^ ( P pCnt ( P ^ A ) ) ) || ( P ^ A ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) <_ ( P ^ A ) ) ) |
| 17 | 12 16 | mpd | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) <_ ( P ^ A ) ) |
| 18 | 3 | nnred | |- ( ( P e. Prime /\ A e. NN0 ) -> P e. RR ) |
| 19 | 6 | nn0zd | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) e. ZZ ) |
| 20 | nn0z | |- ( A e. NN0 -> A e. ZZ ) |
|
| 21 | 20 | adantl | |- ( ( P e. Prime /\ A e. NN0 ) -> A e. ZZ ) |
| 22 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 23 | eluz2gt1 | |- ( P e. ( ZZ>= ` 2 ) -> 1 < P ) |
|
| 24 | 1 22 23 | 3syl | |- ( ( P e. Prime /\ A e. NN0 ) -> 1 < P ) |
| 25 | 18 19 21 24 | leexp2d | |- ( ( P e. Prime /\ A e. NN0 ) -> ( ( P pCnt ( P ^ A ) ) <_ A <-> ( P ^ ( P pCnt ( P ^ A ) ) ) <_ ( P ^ A ) ) ) |
| 26 | 17 25 | mpbird | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) <_ A ) |
| 27 | iddvds | |- ( ( P ^ A ) e. ZZ -> ( P ^ A ) || ( P ^ A ) ) |
|
| 28 | 9 27 | syl | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ A ) || ( P ^ A ) ) |
| 29 | pcdvdsb | |- ( ( P e. Prime /\ ( P ^ A ) e. ZZ /\ A e. NN0 ) -> ( A <_ ( P pCnt ( P ^ A ) ) <-> ( P ^ A ) || ( P ^ A ) ) ) |
|
| 30 | 1 9 4 29 | syl3anc | |- ( ( P e. Prime /\ A e. NN0 ) -> ( A <_ ( P pCnt ( P ^ A ) ) <-> ( P ^ A ) || ( P ^ A ) ) ) |
| 31 | 28 30 | mpbird | |- ( ( P e. Prime /\ A e. NN0 ) -> A <_ ( P pCnt ( P ^ A ) ) ) |
| 32 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 33 | 32 | adantl | |- ( ( P e. Prime /\ A e. NN0 ) -> A e. RR ) |
| 34 | 7 33 | letri3d | |- ( ( P e. Prime /\ A e. NN0 ) -> ( ( P pCnt ( P ^ A ) ) = A <-> ( ( P pCnt ( P ^ A ) ) <_ A /\ A <_ ( P pCnt ( P ^ A ) ) ) ) ) |
| 35 | 26 31 34 | mpbir2and | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) = A ) |