This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . Either the function OrdIso is an isomorphism onto all of A , or OrdIso is not a set, which by oif implies that either ran O C_ A is a proper class or dom O = On . (Contributed by Mario Carneiro, 25-Jun-2015) (Revised by AV, 28-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | |- F = recs ( G ) |
|
| ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
||
| ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
||
| ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
||
| ordtypelem.6 | |- O = OrdIso ( R , A ) |
||
| ordtypelem.7 | |- ( ph -> R We A ) |
||
| ordtypelem.8 | |- ( ph -> R Se A ) |
||
| ordtypelem9.1 | |- ( ph -> O e. V ) |
||
| Assertion | ordtypelem9 | |- ( ph -> O Isom _E , R ( dom O , A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | |- F = recs ( G ) |
|
| 2 | ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
|
| 3 | ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
|
| 4 | ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
|
| 5 | ordtypelem.6 | |- O = OrdIso ( R , A ) |
|
| 6 | ordtypelem.7 | |- ( ph -> R We A ) |
|
| 7 | ordtypelem.8 | |- ( ph -> R Se A ) |
|
| 8 | ordtypelem9.1 | |- ( ph -> O e. V ) |
|
| 9 | 1 2 3 4 5 6 7 | ordtypelem8 | |- ( ph -> O Isom _E , R ( dom O , ran O ) ) |
| 10 | 1 2 3 4 5 6 7 | ordtypelem4 | |- ( ph -> O : ( T i^i dom F ) --> A ) |
| 11 | 10 | frnd | |- ( ph -> ran O C_ A ) |
| 12 | 1 2 3 4 5 6 7 | ordtypelem2 | |- ( ph -> Ord T ) |
| 13 | ordirr | |- ( Ord T -> -. T e. T ) |
|
| 14 | 12 13 | syl | |- ( ph -> -. T e. T ) |
| 15 | 1 | tfr1a | |- ( Fun F /\ Lim dom F ) |
| 16 | 15 | simpri | |- Lim dom F |
| 17 | limord | |- ( Lim dom F -> Ord dom F ) |
|
| 18 | 16 17 | ax-mp | |- Ord dom F |
| 19 | 1 2 3 4 5 6 7 | ordtypelem1 | |- ( ph -> O = ( F |` T ) ) |
| 20 | 8 | elexd | |- ( ph -> O e. _V ) |
| 21 | 19 20 | eqeltrrd | |- ( ph -> ( F |` T ) e. _V ) |
| 22 | 1 | tfr2b | |- ( Ord T -> ( T e. dom F <-> ( F |` T ) e. _V ) ) |
| 23 | 12 22 | syl | |- ( ph -> ( T e. dom F <-> ( F |` T ) e. _V ) ) |
| 24 | 21 23 | mpbird | |- ( ph -> T e. dom F ) |
| 25 | ordelon | |- ( ( Ord dom F /\ T e. dom F ) -> T e. On ) |
|
| 26 | 18 24 25 | sylancr | |- ( ph -> T e. On ) |
| 27 | imaeq2 | |- ( a = T -> ( F " a ) = ( F " T ) ) |
|
| 28 | 27 | raleqdv | |- ( a = T -> ( A. c e. ( F " a ) c R b <-> A. c e. ( F " T ) c R b ) ) |
| 29 | 28 | rexbidv | |- ( a = T -> ( E. b e. A A. c e. ( F " a ) c R b <-> E. b e. A A. c e. ( F " T ) c R b ) ) |
| 30 | breq1 | |- ( z = c -> ( z R t <-> c R t ) ) |
|
| 31 | 30 | cbvralvw | |- ( A. z e. ( F " x ) z R t <-> A. c e. ( F " x ) c R t ) |
| 32 | breq2 | |- ( t = b -> ( c R t <-> c R b ) ) |
|
| 33 | 32 | ralbidv | |- ( t = b -> ( A. c e. ( F " x ) c R t <-> A. c e. ( F " x ) c R b ) ) |
| 34 | 31 33 | bitrid | |- ( t = b -> ( A. z e. ( F " x ) z R t <-> A. c e. ( F " x ) c R b ) ) |
| 35 | 34 | cbvrexvw | |- ( E. t e. A A. z e. ( F " x ) z R t <-> E. b e. A A. c e. ( F " x ) c R b ) |
| 36 | imaeq2 | |- ( x = a -> ( F " x ) = ( F " a ) ) |
|
| 37 | 36 | raleqdv | |- ( x = a -> ( A. c e. ( F " x ) c R b <-> A. c e. ( F " a ) c R b ) ) |
| 38 | 37 | rexbidv | |- ( x = a -> ( E. b e. A A. c e. ( F " x ) c R b <-> E. b e. A A. c e. ( F " a ) c R b ) ) |
| 39 | 35 38 | bitrid | |- ( x = a -> ( E. t e. A A. z e. ( F " x ) z R t <-> E. b e. A A. c e. ( F " a ) c R b ) ) |
| 40 | 39 | cbvrabv | |- { x e. On | E. t e. A A. z e. ( F " x ) z R t } = { a e. On | E. b e. A A. c e. ( F " a ) c R b } |
| 41 | 4 40 | eqtri | |- T = { a e. On | E. b e. A A. c e. ( F " a ) c R b } |
| 42 | 29 41 | elrab2 | |- ( T e. T <-> ( T e. On /\ E. b e. A A. c e. ( F " T ) c R b ) ) |
| 43 | 42 | baib | |- ( T e. On -> ( T e. T <-> E. b e. A A. c e. ( F " T ) c R b ) ) |
| 44 | 26 43 | syl | |- ( ph -> ( T e. T <-> E. b e. A A. c e. ( F " T ) c R b ) ) |
| 45 | 14 44 | mtbid | |- ( ph -> -. E. b e. A A. c e. ( F " T ) c R b ) |
| 46 | ralnex | |- ( A. b e. A -. A. c e. ( F " T ) c R b <-> -. E. b e. A A. c e. ( F " T ) c R b ) |
|
| 47 | 45 46 | sylibr | |- ( ph -> A. b e. A -. A. c e. ( F " T ) c R b ) |
| 48 | 47 | r19.21bi | |- ( ( ph /\ b e. A ) -> -. A. c e. ( F " T ) c R b ) |
| 49 | 19 | rneqd | |- ( ph -> ran O = ran ( F |` T ) ) |
| 50 | df-ima | |- ( F " T ) = ran ( F |` T ) |
|
| 51 | 49 50 | eqtr4di | |- ( ph -> ran O = ( F " T ) ) |
| 52 | 51 | adantr | |- ( ( ph /\ b e. A ) -> ran O = ( F " T ) ) |
| 53 | 52 | raleqdv | |- ( ( ph /\ b e. A ) -> ( A. c e. ran O c R b <-> A. c e. ( F " T ) c R b ) ) |
| 54 | 10 | ffund | |- ( ph -> Fun O ) |
| 55 | 54 | funfnd | |- ( ph -> O Fn dom O ) |
| 56 | 55 | adantr | |- ( ( ph /\ b e. A ) -> O Fn dom O ) |
| 57 | breq1 | |- ( c = ( O ` m ) -> ( c R b <-> ( O ` m ) R b ) ) |
|
| 58 | 57 | ralrn | |- ( O Fn dom O -> ( A. c e. ran O c R b <-> A. m e. dom O ( O ` m ) R b ) ) |
| 59 | 56 58 | syl | |- ( ( ph /\ b e. A ) -> ( A. c e. ran O c R b <-> A. m e. dom O ( O ` m ) R b ) ) |
| 60 | 53 59 | bitr3d | |- ( ( ph /\ b e. A ) -> ( A. c e. ( F " T ) c R b <-> A. m e. dom O ( O ` m ) R b ) ) |
| 61 | 48 60 | mtbid | |- ( ( ph /\ b e. A ) -> -. A. m e. dom O ( O ` m ) R b ) |
| 62 | rexnal | |- ( E. m e. dom O -. ( O ` m ) R b <-> -. A. m e. dom O ( O ` m ) R b ) |
|
| 63 | 61 62 | sylibr | |- ( ( ph /\ b e. A ) -> E. m e. dom O -. ( O ` m ) R b ) |
| 64 | 1 2 3 4 5 6 7 | ordtypelem7 | |- ( ( ( ph /\ b e. A ) /\ m e. dom O ) -> ( ( O ` m ) R b \/ b e. ran O ) ) |
| 65 | 64 | ord | |- ( ( ( ph /\ b e. A ) /\ m e. dom O ) -> ( -. ( O ` m ) R b -> b e. ran O ) ) |
| 66 | 65 | rexlimdva | |- ( ( ph /\ b e. A ) -> ( E. m e. dom O -. ( O ` m ) R b -> b e. ran O ) ) |
| 67 | 63 66 | mpd | |- ( ( ph /\ b e. A ) -> b e. ran O ) |
| 68 | 11 67 | eqelssd | |- ( ph -> ran O = A ) |
| 69 | isoeq5 | |- ( ran O = A -> ( O Isom _E , R ( dom O , ran O ) <-> O Isom _E , R ( dom O , A ) ) ) |
|
| 70 | 68 69 | syl | |- ( ph -> ( O Isom _E , R ( dom O , ran O ) <-> O Isom _E , R ( dom O , A ) ) ) |
| 71 | 9 70 | mpbid | |- ( ph -> O Isom _E , R ( dom O , A ) ) |