This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . ran O is an initial segment of A under the well-order R . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | |- F = recs ( G ) |
|
| ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
||
| ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
||
| ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
||
| ordtypelem.6 | |- O = OrdIso ( R , A ) |
||
| ordtypelem.7 | |- ( ph -> R We A ) |
||
| ordtypelem.8 | |- ( ph -> R Se A ) |
||
| Assertion | ordtypelem7 | |- ( ( ( ph /\ N e. A ) /\ M e. dom O ) -> ( ( O ` M ) R N \/ N e. ran O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | |- F = recs ( G ) |
|
| 2 | ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
|
| 3 | ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
|
| 4 | ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
|
| 5 | ordtypelem.6 | |- O = OrdIso ( R , A ) |
|
| 6 | ordtypelem.7 | |- ( ph -> R We A ) |
|
| 7 | ordtypelem.8 | |- ( ph -> R Se A ) |
|
| 8 | eldif | |- ( N e. ( A \ ran O ) <-> ( N e. A /\ -. N e. ran O ) ) |
|
| 9 | 1 2 3 4 5 6 7 | ordtypelem4 | |- ( ph -> O : ( T i^i dom F ) --> A ) |
| 10 | 9 | adantr | |- ( ( ph /\ N e. ( A \ ran O ) ) -> O : ( T i^i dom F ) --> A ) |
| 11 | 10 | fdmd | |- ( ( ph /\ N e. ( A \ ran O ) ) -> dom O = ( T i^i dom F ) ) |
| 12 | inss1 | |- ( T i^i dom F ) C_ T |
|
| 13 | 1 2 3 4 5 6 7 | ordtypelem2 | |- ( ph -> Ord T ) |
| 14 | 13 | adantr | |- ( ( ph /\ N e. ( A \ ran O ) ) -> Ord T ) |
| 15 | ordsson | |- ( Ord T -> T C_ On ) |
|
| 16 | 14 15 | syl | |- ( ( ph /\ N e. ( A \ ran O ) ) -> T C_ On ) |
| 17 | 12 16 | sstrid | |- ( ( ph /\ N e. ( A \ ran O ) ) -> ( T i^i dom F ) C_ On ) |
| 18 | 11 17 | eqsstrd | |- ( ( ph /\ N e. ( A \ ran O ) ) -> dom O C_ On ) |
| 19 | 18 | sseld | |- ( ( ph /\ N e. ( A \ ran O ) ) -> ( M e. dom O -> M e. On ) ) |
| 20 | eleq1 | |- ( a = b -> ( a e. dom O <-> b e. dom O ) ) |
|
| 21 | fveq2 | |- ( a = b -> ( O ` a ) = ( O ` b ) ) |
|
| 22 | 21 | breq1d | |- ( a = b -> ( ( O ` a ) R N <-> ( O ` b ) R N ) ) |
| 23 | 20 22 | imbi12d | |- ( a = b -> ( ( a e. dom O -> ( O ` a ) R N ) <-> ( b e. dom O -> ( O ` b ) R N ) ) ) |
| 24 | 23 | imbi2d | |- ( a = b -> ( ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( O ` a ) R N ) ) <-> ( ( ph /\ N e. ( A \ ran O ) ) -> ( b e. dom O -> ( O ` b ) R N ) ) ) ) |
| 25 | eleq1 | |- ( a = M -> ( a e. dom O <-> M e. dom O ) ) |
|
| 26 | fveq2 | |- ( a = M -> ( O ` a ) = ( O ` M ) ) |
|
| 27 | 26 | breq1d | |- ( a = M -> ( ( O ` a ) R N <-> ( O ` M ) R N ) ) |
| 28 | 25 27 | imbi12d | |- ( a = M -> ( ( a e. dom O -> ( O ` a ) R N ) <-> ( M e. dom O -> ( O ` M ) R N ) ) ) |
| 29 | 28 | imbi2d | |- ( a = M -> ( ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( O ` a ) R N ) ) <-> ( ( ph /\ N e. ( A \ ran O ) ) -> ( M e. dom O -> ( O ` M ) R N ) ) ) ) |
| 30 | r19.21v | |- ( A. b e. a ( ( ph /\ N e. ( A \ ran O ) ) -> ( b e. dom O -> ( O ` b ) R N ) ) <-> ( ( ph /\ N e. ( A \ ran O ) ) -> A. b e. a ( b e. dom O -> ( O ` b ) R N ) ) ) |
|
| 31 | 1 | tfr1a | |- ( Fun F /\ Lim dom F ) |
| 32 | 31 | simpri | |- Lim dom F |
| 33 | limord | |- ( Lim dom F -> Ord dom F ) |
|
| 34 | 32 33 | ax-mp | |- Ord dom F |
| 35 | ordin | |- ( ( Ord T /\ Ord dom F ) -> Ord ( T i^i dom F ) ) |
|
| 36 | 14 34 35 | sylancl | |- ( ( ph /\ N e. ( A \ ran O ) ) -> Ord ( T i^i dom F ) ) |
| 37 | ordeq | |- ( dom O = ( T i^i dom F ) -> ( Ord dom O <-> Ord ( T i^i dom F ) ) ) |
|
| 38 | 11 37 | syl | |- ( ( ph /\ N e. ( A \ ran O ) ) -> ( Ord dom O <-> Ord ( T i^i dom F ) ) ) |
| 39 | 36 38 | mpbird | |- ( ( ph /\ N e. ( A \ ran O ) ) -> Ord dom O ) |
| 40 | ordelss | |- ( ( Ord dom O /\ a e. dom O ) -> a C_ dom O ) |
|
| 41 | 39 40 | sylan | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) -> a C_ dom O ) |
| 42 | 41 | sselda | |- ( ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) /\ b e. a ) -> b e. dom O ) |
| 43 | pm5.5 | |- ( b e. dom O -> ( ( b e. dom O -> ( O ` b ) R N ) <-> ( O ` b ) R N ) ) |
|
| 44 | 42 43 | syl | |- ( ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) /\ b e. a ) -> ( ( b e. dom O -> ( O ` b ) R N ) <-> ( O ` b ) R N ) ) |
| 45 | 44 | ralbidva | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) -> ( A. b e. a ( b e. dom O -> ( O ` b ) R N ) <-> A. b e. a ( O ` b ) R N ) ) |
| 46 | eldifn | |- ( N e. ( A \ ran O ) -> -. N e. ran O ) |
|
| 47 | 46 | ad2antlr | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> -. N e. ran O ) |
| 48 | 9 | ad2antrr | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> O : ( T i^i dom F ) --> A ) |
| 49 | 48 | ffnd | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> O Fn ( T i^i dom F ) ) |
| 50 | simprl | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a e. dom O ) |
|
| 51 | 48 | fdmd | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> dom O = ( T i^i dom F ) ) |
| 52 | 50 51 | eleqtrd | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a e. ( T i^i dom F ) ) |
| 53 | fnfvelrn | |- ( ( O Fn ( T i^i dom F ) /\ a e. ( T i^i dom F ) ) -> ( O ` a ) e. ran O ) |
|
| 54 | 49 52 53 | syl2anc | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) e. ran O ) |
| 55 | eleq1 | |- ( ( O ` a ) = N -> ( ( O ` a ) e. ran O <-> N e. ran O ) ) |
|
| 56 | 54 55 | syl5ibcom | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( ( O ` a ) = N -> N e. ran O ) ) |
| 57 | 47 56 | mtod | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> -. ( O ` a ) = N ) |
| 58 | breq1 | |- ( u = N -> ( u R ( O ` a ) <-> N R ( O ` a ) ) ) |
|
| 59 | 58 | notbid | |- ( u = N -> ( -. u R ( O ` a ) <-> -. N R ( O ` a ) ) ) |
| 60 | 1 2 3 4 5 6 7 | ordtypelem1 | |- ( ph -> O = ( F |` T ) ) |
| 61 | 60 | ad2antrr | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> O = ( F |` T ) ) |
| 62 | 61 | fveq1d | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) = ( ( F |` T ) ` a ) ) |
| 63 | 52 | elin1d | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a e. T ) |
| 64 | 63 | fvresd | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( ( F |` T ) ` a ) = ( F ` a ) ) |
| 65 | 62 64 | eqtrd | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) = ( F ` a ) ) |
| 66 | simpll | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ph ) |
|
| 67 | 1 2 3 4 5 6 7 | ordtypelem3 | |- ( ( ph /\ a e. ( T i^i dom F ) ) -> ( F ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } ) |
| 68 | 66 52 67 | syl2anc | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( F ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } ) |
| 69 | 65 68 | eqeltrd | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } ) |
| 70 | breq2 | |- ( v = ( O ` a ) -> ( u R v <-> u R ( O ` a ) ) ) |
|
| 71 | 70 | notbid | |- ( v = ( O ` a ) -> ( -. u R v <-> -. u R ( O ` a ) ) ) |
| 72 | 71 | ralbidv | |- ( v = ( O ` a ) -> ( A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v <-> A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R ( O ` a ) ) ) |
| 73 | 72 | elrab | |- ( ( O ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } <-> ( ( O ` a ) e. { w e. A | A. j e. ( F " a ) j R w } /\ A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R ( O ` a ) ) ) |
| 74 | 73 | simprbi | |- ( ( O ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } -> A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R ( O ` a ) ) |
| 75 | 69 74 | syl | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R ( O ` a ) ) |
| 76 | breq2 | |- ( w = N -> ( j R w <-> j R N ) ) |
|
| 77 | 76 | ralbidv | |- ( w = N -> ( A. j e. ( F " a ) j R w <-> A. j e. ( F " a ) j R N ) ) |
| 78 | eldifi | |- ( N e. ( A \ ran O ) -> N e. A ) |
|
| 79 | 78 | ad2antlr | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> N e. A ) |
| 80 | simprr | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> A. b e. a ( O ` b ) R N ) |
|
| 81 | 41 | adantrr | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a C_ dom O ) |
| 82 | 48 81 | fssdmd | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a C_ ( T i^i dom F ) ) |
| 83 | 82 12 | sstrdi | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a C_ T ) |
| 84 | fveq1 | |- ( O = ( F |` T ) -> ( O ` b ) = ( ( F |` T ) ` b ) ) |
|
| 85 | ssel2 | |- ( ( a C_ T /\ b e. a ) -> b e. T ) |
|
| 86 | 85 | fvresd | |- ( ( a C_ T /\ b e. a ) -> ( ( F |` T ) ` b ) = ( F ` b ) ) |
| 87 | 84 86 | sylan9eq | |- ( ( O = ( F |` T ) /\ ( a C_ T /\ b e. a ) ) -> ( O ` b ) = ( F ` b ) ) |
| 88 | 87 | anassrs | |- ( ( ( O = ( F |` T ) /\ a C_ T ) /\ b e. a ) -> ( O ` b ) = ( F ` b ) ) |
| 89 | 88 | breq1d | |- ( ( ( O = ( F |` T ) /\ a C_ T ) /\ b e. a ) -> ( ( O ` b ) R N <-> ( F ` b ) R N ) ) |
| 90 | 89 | ralbidva | |- ( ( O = ( F |` T ) /\ a C_ T ) -> ( A. b e. a ( O ` b ) R N <-> A. b e. a ( F ` b ) R N ) ) |
| 91 | 61 83 90 | syl2anc | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( A. b e. a ( O ` b ) R N <-> A. b e. a ( F ` b ) R N ) ) |
| 92 | 80 91 | mpbid | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> A. b e. a ( F ` b ) R N ) |
| 93 | 31 | simpli | |- Fun F |
| 94 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 95 | 93 94 | mpbi | |- F Fn dom F |
| 96 | inss2 | |- ( T i^i dom F ) C_ dom F |
|
| 97 | 82 96 | sstrdi | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a C_ dom F ) |
| 98 | breq1 | |- ( j = ( F ` b ) -> ( j R N <-> ( F ` b ) R N ) ) |
|
| 99 | 98 | ralima | |- ( ( F Fn dom F /\ a C_ dom F ) -> ( A. j e. ( F " a ) j R N <-> A. b e. a ( F ` b ) R N ) ) |
| 100 | 95 97 99 | sylancr | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( A. j e. ( F " a ) j R N <-> A. b e. a ( F ` b ) R N ) ) |
| 101 | 92 100 | mpbird | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> A. j e. ( F " a ) j R N ) |
| 102 | 77 79 101 | elrabd | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> N e. { w e. A | A. j e. ( F " a ) j R w } ) |
| 103 | 59 75 102 | rspcdva | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> -. N R ( O ` a ) ) |
| 104 | weso | |- ( R We A -> R Or A ) |
|
| 105 | 6 104 | syl | |- ( ph -> R Or A ) |
| 106 | 105 | ad2antrr | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> R Or A ) |
| 107 | 48 52 | ffvelcdmd | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) e. A ) |
| 108 | sotric | |- ( ( R Or A /\ ( ( O ` a ) e. A /\ N e. A ) ) -> ( ( O ` a ) R N <-> -. ( ( O ` a ) = N \/ N R ( O ` a ) ) ) ) |
|
| 109 | 106 107 79 108 | syl12anc | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( ( O ` a ) R N <-> -. ( ( O ` a ) = N \/ N R ( O ` a ) ) ) ) |
| 110 | ioran | |- ( -. ( ( O ` a ) = N \/ N R ( O ` a ) ) <-> ( -. ( O ` a ) = N /\ -. N R ( O ` a ) ) ) |
|
| 111 | 109 110 | bitrdi | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( ( O ` a ) R N <-> ( -. ( O ` a ) = N /\ -. N R ( O ` a ) ) ) ) |
| 112 | 57 103 111 | mpbir2and | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) R N ) |
| 113 | 112 | expr | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) -> ( A. b e. a ( O ` b ) R N -> ( O ` a ) R N ) ) |
| 114 | 45 113 | sylbid | |- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) -> ( A. b e. a ( b e. dom O -> ( O ` b ) R N ) -> ( O ` a ) R N ) ) |
| 115 | 114 | ex | |- ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( A. b e. a ( b e. dom O -> ( O ` b ) R N ) -> ( O ` a ) R N ) ) ) |
| 116 | 115 | com23 | |- ( ( ph /\ N e. ( A \ ran O ) ) -> ( A. b e. a ( b e. dom O -> ( O ` b ) R N ) -> ( a e. dom O -> ( O ` a ) R N ) ) ) |
| 117 | 116 | a2i | |- ( ( ( ph /\ N e. ( A \ ran O ) ) -> A. b e. a ( b e. dom O -> ( O ` b ) R N ) ) -> ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( O ` a ) R N ) ) ) |
| 118 | 117 | a1i | |- ( a e. On -> ( ( ( ph /\ N e. ( A \ ran O ) ) -> A. b e. a ( b e. dom O -> ( O ` b ) R N ) ) -> ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( O ` a ) R N ) ) ) ) |
| 119 | 30 118 | biimtrid | |- ( a e. On -> ( A. b e. a ( ( ph /\ N e. ( A \ ran O ) ) -> ( b e. dom O -> ( O ` b ) R N ) ) -> ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( O ` a ) R N ) ) ) ) |
| 120 | 24 29 119 | tfis3 | |- ( M e. On -> ( ( ph /\ N e. ( A \ ran O ) ) -> ( M e. dom O -> ( O ` M ) R N ) ) ) |
| 121 | 120 | com3l | |- ( ( ph /\ N e. ( A \ ran O ) ) -> ( M e. dom O -> ( M e. On -> ( O ` M ) R N ) ) ) |
| 122 | 19 121 | mpdd | |- ( ( ph /\ N e. ( A \ ran O ) ) -> ( M e. dom O -> ( O ` M ) R N ) ) |
| 123 | 8 122 | sylan2br | |- ( ( ph /\ ( N e. A /\ -. N e. ran O ) ) -> ( M e. dom O -> ( O ` M ) R N ) ) |
| 124 | 123 | anassrs | |- ( ( ( ph /\ N e. A ) /\ -. N e. ran O ) -> ( M e. dom O -> ( O ` M ) R N ) ) |
| 125 | 124 | impancom | |- ( ( ( ph /\ N e. A ) /\ M e. dom O ) -> ( -. N e. ran O -> ( O ` M ) R N ) ) |
| 126 | 125 | orrd | |- ( ( ( ph /\ N e. A ) /\ M e. dom O ) -> ( N e. ran O \/ ( O ` M ) R N ) ) |
| 127 | 126 | orcomd | |- ( ( ( ph /\ N e. A ) /\ M e. dom O ) -> ( ( O ` M ) R N \/ N e. ran O ) ) |