This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak version of tfr1 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfr.1 | |- F = recs ( G ) |
|
| Assertion | tfr1a | |- ( Fun F /\ Lim dom F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr.1 | |- F = recs ( G ) |
|
| 2 | eqid | |- { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } |
|
| 3 | 2 | tfrlem7 | |- Fun recs ( G ) |
| 4 | 1 | funeqi | |- ( Fun F <-> Fun recs ( G ) ) |
| 5 | 3 4 | mpbir | |- Fun F |
| 6 | 2 | tfrlem16 | |- Lim dom recs ( G ) |
| 7 | 1 | dmeqi | |- dom F = dom recs ( G ) |
| 8 | limeq | |- ( dom F = dom recs ( G ) -> ( Lim dom F <-> Lim dom recs ( G ) ) ) |
|
| 9 | 7 8 | ax-mp | |- ( Lim dom F <-> Lim dom recs ( G ) ) |
| 10 | 6 9 | mpbir | |- Lim dom F |
| 11 | 5 10 | pm3.2i | |- ( Fun F /\ Lim dom F ) |