This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | |- F = recs ( G ) |
|
| ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
||
| ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
||
| ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
||
| ordtypelem.6 | |- O = OrdIso ( R , A ) |
||
| ordtypelem.7 | |- ( ph -> R We A ) |
||
| ordtypelem.8 | |- ( ph -> R Se A ) |
||
| Assertion | ordtypelem2 | |- ( ph -> Ord T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | |- F = recs ( G ) |
|
| 2 | ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
|
| 3 | ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
|
| 4 | ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
|
| 5 | ordtypelem.6 | |- O = OrdIso ( R , A ) |
|
| 6 | ordtypelem.7 | |- ( ph -> R We A ) |
|
| 7 | ordtypelem.8 | |- ( ph -> R Se A ) |
|
| 8 | 4 | ssrab3 | |- T C_ On |
| 9 | 8 | a1i | |- ( ph -> T C_ On ) |
| 10 | 9 | sselda | |- ( ( ph /\ a e. T ) -> a e. On ) |
| 11 | onss | |- ( a e. On -> a C_ On ) |
|
| 12 | 10 11 | syl | |- ( ( ph /\ a e. T ) -> a C_ On ) |
| 13 | eloni | |- ( a e. On -> Ord a ) |
|
| 14 | 10 13 | syl | |- ( ( ph /\ a e. T ) -> Ord a ) |
| 15 | imaeq2 | |- ( x = a -> ( F " x ) = ( F " a ) ) |
|
| 16 | 15 | raleqdv | |- ( x = a -> ( A. z e. ( F " x ) z R t <-> A. z e. ( F " a ) z R t ) ) |
| 17 | 16 | rexbidv | |- ( x = a -> ( E. t e. A A. z e. ( F " x ) z R t <-> E. t e. A A. z e. ( F " a ) z R t ) ) |
| 18 | 17 4 | elrab2 | |- ( a e. T <-> ( a e. On /\ E. t e. A A. z e. ( F " a ) z R t ) ) |
| 19 | 18 | simprbi | |- ( a e. T -> E. t e. A A. z e. ( F " a ) z R t ) |
| 20 | 19 | adantl | |- ( ( ph /\ a e. T ) -> E. t e. A A. z e. ( F " a ) z R t ) |
| 21 | ordelss | |- ( ( Ord a /\ x e. a ) -> x C_ a ) |
|
| 22 | imass2 | |- ( x C_ a -> ( F " x ) C_ ( F " a ) ) |
|
| 23 | ssralv | |- ( ( F " x ) C_ ( F " a ) -> ( A. z e. ( F " a ) z R t -> A. z e. ( F " x ) z R t ) ) |
|
| 24 | 23 | reximdv | |- ( ( F " x ) C_ ( F " a ) -> ( E. t e. A A. z e. ( F " a ) z R t -> E. t e. A A. z e. ( F " x ) z R t ) ) |
| 25 | 21 22 24 | 3syl | |- ( ( Ord a /\ x e. a ) -> ( E. t e. A A. z e. ( F " a ) z R t -> E. t e. A A. z e. ( F " x ) z R t ) ) |
| 26 | 25 | ralrimdva | |- ( Ord a -> ( E. t e. A A. z e. ( F " a ) z R t -> A. x e. a E. t e. A A. z e. ( F " x ) z R t ) ) |
| 27 | 14 20 26 | sylc | |- ( ( ph /\ a e. T ) -> A. x e. a E. t e. A A. z e. ( F " x ) z R t ) |
| 28 | ssrab | |- ( a C_ { x e. On | E. t e. A A. z e. ( F " x ) z R t } <-> ( a C_ On /\ A. x e. a E. t e. A A. z e. ( F " x ) z R t ) ) |
|
| 29 | 12 27 28 | sylanbrc | |- ( ( ph /\ a e. T ) -> a C_ { x e. On | E. t e. A A. z e. ( F " x ) z R t } ) |
| 30 | 29 4 | sseqtrrdi | |- ( ( ph /\ a e. T ) -> a C_ T ) |
| 31 | 30 | ralrimiva | |- ( ph -> A. a e. T a C_ T ) |
| 32 | dftr3 | |- ( Tr T <-> A. a e. T a C_ T ) |
|
| 33 | 31 32 | sylibr | |- ( ph -> Tr T ) |
| 34 | ordon | |- Ord On |
|
| 35 | trssord | |- ( ( Tr T /\ T C_ On /\ Ord On ) -> Ord T ) |
|
| 36 | 8 34 35 | mp3an23 | |- ( Tr T -> Ord T ) |
| 37 | 33 36 | syl | |- ( ph -> Ord T ) |