This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Without assuming ax-rep , we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfr.1 | |- F = recs ( G ) |
|
| Assertion | tfr2b | |- ( Ord A -> ( A e. dom F <-> ( F |` A ) e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr.1 | |- F = recs ( G ) |
|
| 2 | ordeleqon | |- ( Ord A <-> ( A e. On \/ A = On ) ) |
|
| 3 | eqid | |- { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } |
|
| 4 | 3 | tfrlem15 | |- ( A e. On -> ( A e. dom recs ( G ) <-> ( recs ( G ) |` A ) e. _V ) ) |
| 5 | 1 | dmeqi | |- dom F = dom recs ( G ) |
| 6 | 5 | eleq2i | |- ( A e. dom F <-> A e. dom recs ( G ) ) |
| 7 | 1 | reseq1i | |- ( F |` A ) = ( recs ( G ) |` A ) |
| 8 | 7 | eleq1i | |- ( ( F |` A ) e. _V <-> ( recs ( G ) |` A ) e. _V ) |
| 9 | 4 6 8 | 3bitr4g | |- ( A e. On -> ( A e. dom F <-> ( F |` A ) e. _V ) ) |
| 10 | onprc | |- -. On e. _V |
|
| 11 | elex | |- ( On e. dom F -> On e. _V ) |
|
| 12 | 10 11 | mto | |- -. On e. dom F |
| 13 | eleq1 | |- ( A = On -> ( A e. dom F <-> On e. dom F ) ) |
|
| 14 | 12 13 | mtbiri | |- ( A = On -> -. A e. dom F ) |
| 15 | 3 | tfrlem13 | |- -. recs ( G ) e. _V |
| 16 | 1 15 | eqneltri | |- -. F e. _V |
| 17 | reseq2 | |- ( A = On -> ( F |` A ) = ( F |` On ) ) |
|
| 18 | 1 | tfr1a | |- ( Fun F /\ Lim dom F ) |
| 19 | 18 | simpli | |- Fun F |
| 20 | funrel | |- ( Fun F -> Rel F ) |
|
| 21 | 19 20 | ax-mp | |- Rel F |
| 22 | 18 | simpri | |- Lim dom F |
| 23 | limord | |- ( Lim dom F -> Ord dom F ) |
|
| 24 | ordsson | |- ( Ord dom F -> dom F C_ On ) |
|
| 25 | 22 23 24 | mp2b | |- dom F C_ On |
| 26 | relssres | |- ( ( Rel F /\ dom F C_ On ) -> ( F |` On ) = F ) |
|
| 27 | 21 25 26 | mp2an | |- ( F |` On ) = F |
| 28 | 17 27 | eqtrdi | |- ( A = On -> ( F |` A ) = F ) |
| 29 | 28 | eleq1d | |- ( A = On -> ( ( F |` A ) e. _V <-> F e. _V ) ) |
| 30 | 16 29 | mtbiri | |- ( A = On -> -. ( F |` A ) e. _V ) |
| 31 | 14 30 | 2falsed | |- ( A = On -> ( A e. dom F <-> ( F |` A ) e. _V ) ) |
| 32 | 9 31 | jaoi | |- ( ( A e. On \/ A = On ) -> ( A e. dom F <-> ( F |` A ) e. _V ) ) |
| 33 | 2 32 | sylbi | |- ( Ord A -> ( A e. dom F <-> ( F |` A ) e. _V ) ) |