This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | |- F = recs ( G ) |
|
| ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
||
| ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
||
| ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
||
| ordtypelem.6 | |- O = OrdIso ( R , A ) |
||
| ordtypelem.7 | |- ( ph -> R We A ) |
||
| ordtypelem.8 | |- ( ph -> R Se A ) |
||
| Assertion | ordtypelem4 | |- ( ph -> O : ( T i^i dom F ) --> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | |- F = recs ( G ) |
|
| 2 | ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
|
| 3 | ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
|
| 4 | ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
|
| 5 | ordtypelem.6 | |- O = OrdIso ( R , A ) |
|
| 6 | ordtypelem.7 | |- ( ph -> R We A ) |
|
| 7 | ordtypelem.8 | |- ( ph -> R Se A ) |
|
| 8 | 1 | tfr1a | |- ( Fun F /\ Lim dom F ) |
| 9 | 8 | simpli | |- Fun F |
| 10 | funres | |- ( Fun F -> Fun ( F |` T ) ) |
|
| 11 | 9 10 | mp1i | |- ( ph -> Fun ( F |` T ) ) |
| 12 | 11 | funfnd | |- ( ph -> ( F |` T ) Fn dom ( F |` T ) ) |
| 13 | dmres | |- dom ( F |` T ) = ( T i^i dom F ) |
|
| 14 | 13 | fneq2i | |- ( ( F |` T ) Fn dom ( F |` T ) <-> ( F |` T ) Fn ( T i^i dom F ) ) |
| 15 | 12 14 | sylib | |- ( ph -> ( F |` T ) Fn ( T i^i dom F ) ) |
| 16 | simpr | |- ( ( ph /\ a e. ( T i^i dom F ) ) -> a e. ( T i^i dom F ) ) |
|
| 17 | 16 | elin1d | |- ( ( ph /\ a e. ( T i^i dom F ) ) -> a e. T ) |
| 18 | 17 | fvresd | |- ( ( ph /\ a e. ( T i^i dom F ) ) -> ( ( F |` T ) ` a ) = ( F ` a ) ) |
| 19 | ssrab2 | |- { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } C_ { w e. A | A. j e. ( F " a ) j R w } |
|
| 20 | ssrab2 | |- { w e. A | A. j e. ( F " a ) j R w } C_ A |
|
| 21 | 19 20 | sstri | |- { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } C_ A |
| 22 | 1 2 3 4 5 6 7 | ordtypelem3 | |- ( ( ph /\ a e. ( T i^i dom F ) ) -> ( F ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } ) |
| 23 | 21 22 | sselid | |- ( ( ph /\ a e. ( T i^i dom F ) ) -> ( F ` a ) e. A ) |
| 24 | 18 23 | eqeltrd | |- ( ( ph /\ a e. ( T i^i dom F ) ) -> ( ( F |` T ) ` a ) e. A ) |
| 25 | 24 | ralrimiva | |- ( ph -> A. a e. ( T i^i dom F ) ( ( F |` T ) ` a ) e. A ) |
| 26 | ffnfv | |- ( ( F |` T ) : ( T i^i dom F ) --> A <-> ( ( F |` T ) Fn ( T i^i dom F ) /\ A. a e. ( T i^i dom F ) ( ( F |` T ) ` a ) e. A ) ) |
|
| 27 | 15 25 26 | sylanbrc | |- ( ph -> ( F |` T ) : ( T i^i dom F ) --> A ) |
| 28 | 1 2 3 4 5 6 7 | ordtypelem1 | |- ( ph -> O = ( F |` T ) ) |
| 29 | 28 | feq1d | |- ( ph -> ( O : ( T i^i dom F ) --> A <-> ( F |` T ) : ( T i^i dom F ) --> A ) ) |
| 30 | 27 29 | mpbird | |- ( ph -> O : ( T i^i dom F ) --> A ) |