This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | |- F = recs ( G ) |
|
| ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
||
| ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
||
| ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
||
| ordtypelem.6 | |- O = OrdIso ( R , A ) |
||
| ordtypelem.7 | |- ( ph -> R We A ) |
||
| ordtypelem.8 | |- ( ph -> R Se A ) |
||
| Assertion | ordtypelem1 | |- ( ph -> O = ( F |` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | |- F = recs ( G ) |
|
| 2 | ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
|
| 3 | ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
|
| 4 | ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
|
| 5 | ordtypelem.6 | |- O = OrdIso ( R , A ) |
|
| 6 | ordtypelem.7 | |- ( ph -> R We A ) |
|
| 7 | ordtypelem.8 | |- ( ph -> R Se A ) |
|
| 8 | iftrue | |- ( ( R We A /\ R Se A ) -> if ( ( R We A /\ R Se A ) , ( F |` { x e. On | E. t e. A A. z e. ( F " x ) z R t } ) , (/) ) = ( F |` { x e. On | E. t e. A A. z e. ( F " x ) z R t } ) ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ph -> if ( ( R We A /\ R Se A ) , ( F |` { x e. On | E. t e. A A. z e. ( F " x ) z R t } ) , (/) ) = ( F |` { x e. On | E. t e. A A. z e. ( F " x ) z R t } ) ) |
| 10 | 2 3 1 | dfoi | |- OrdIso ( R , A ) = if ( ( R We A /\ R Se A ) , ( F |` { x e. On | E. t e. A A. z e. ( F " x ) z R t } ) , (/) ) |
| 11 | 5 10 | eqtri | |- O = if ( ( R We A /\ R Se A ) , ( F |` { x e. On | E. t e. A A. z e. ( F " x ) z R t } ) , (/) ) |
| 12 | 4 | reseq2i | |- ( F |` T ) = ( F |` { x e. On | E. t e. A A. z e. ( F " x ) z R t } ) |
| 13 | 9 11 12 | 3eqtr4g | |- ( ph -> O = ( F |` T ) ) |