This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | |- F = recs ( G ) |
|
| ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
||
| ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
||
| ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
||
| ordtypelem.6 | |- O = OrdIso ( R , A ) |
||
| ordtypelem.7 | |- ( ph -> R We A ) |
||
| ordtypelem.8 | |- ( ph -> R Se A ) |
||
| Assertion | ordtypelem8 | |- ( ph -> O Isom _E , R ( dom O , ran O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | |- F = recs ( G ) |
|
| 2 | ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
|
| 3 | ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
|
| 4 | ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
|
| 5 | ordtypelem.6 | |- O = OrdIso ( R , A ) |
|
| 6 | ordtypelem.7 | |- ( ph -> R We A ) |
|
| 7 | ordtypelem.8 | |- ( ph -> R Se A ) |
|
| 8 | 1 2 3 4 5 6 7 | ordtypelem4 | |- ( ph -> O : ( T i^i dom F ) --> A ) |
| 9 | 8 | fdmd | |- ( ph -> dom O = ( T i^i dom F ) ) |
| 10 | inss1 | |- ( T i^i dom F ) C_ T |
|
| 11 | 1 2 3 4 5 6 7 | ordtypelem2 | |- ( ph -> Ord T ) |
| 12 | ordsson | |- ( Ord T -> T C_ On ) |
|
| 13 | 11 12 | syl | |- ( ph -> T C_ On ) |
| 14 | 10 13 | sstrid | |- ( ph -> ( T i^i dom F ) C_ On ) |
| 15 | 9 14 | eqsstrd | |- ( ph -> dom O C_ On ) |
| 16 | epweon | |- _E We On |
|
| 17 | weso | |- ( _E We On -> _E Or On ) |
|
| 18 | 16 17 | ax-mp | |- _E Or On |
| 19 | soss | |- ( dom O C_ On -> ( _E Or On -> _E Or dom O ) ) |
|
| 20 | 15 18 19 | mpisyl | |- ( ph -> _E Or dom O ) |
| 21 | 8 | frnd | |- ( ph -> ran O C_ A ) |
| 22 | wess | |- ( ran O C_ A -> ( R We A -> R We ran O ) ) |
|
| 23 | 21 6 22 | sylc | |- ( ph -> R We ran O ) |
| 24 | weso | |- ( R We ran O -> R Or ran O ) |
|
| 25 | sopo | |- ( R Or ran O -> R Po ran O ) |
|
| 26 | 23 24 25 | 3syl | |- ( ph -> R Po ran O ) |
| 27 | 8 | ffund | |- ( ph -> Fun O ) |
| 28 | funforn | |- ( Fun O <-> O : dom O -onto-> ran O ) |
|
| 29 | 27 28 | sylib | |- ( ph -> O : dom O -onto-> ran O ) |
| 30 | epel | |- ( a _E b <-> a e. b ) |
|
| 31 | 1 2 3 4 5 6 7 | ordtypelem6 | |- ( ( ph /\ b e. dom O ) -> ( a e. b -> ( O ` a ) R ( O ` b ) ) ) |
| 32 | 30 31 | biimtrid | |- ( ( ph /\ b e. dom O ) -> ( a _E b -> ( O ` a ) R ( O ` b ) ) ) |
| 33 | 32 | ralrimiva | |- ( ph -> A. b e. dom O ( a _E b -> ( O ` a ) R ( O ` b ) ) ) |
| 34 | 33 | ralrimivw | |- ( ph -> A. a e. dom O A. b e. dom O ( a _E b -> ( O ` a ) R ( O ` b ) ) ) |
| 35 | soisoi | |- ( ( ( _E Or dom O /\ R Po ran O ) /\ ( O : dom O -onto-> ran O /\ A. a e. dom O A. b e. dom O ( a _E b -> ( O ` a ) R ( O ` b ) ) ) ) -> O Isom _E , R ( dom O , ran O ) ) |
|
| 36 | 20 26 29 34 35 | syl22anc | |- ( ph -> O Isom _E , R ( dom O , ran O ) ) |