This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . Using ax-rep , exclude the possibility that O is a proper class and does not enumerate all of A . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | |- F = recs ( G ) |
|
| ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
||
| ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
||
| ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
||
| ordtypelem.6 | |- O = OrdIso ( R , A ) |
||
| ordtypelem.7 | |- ( ph -> R We A ) |
||
| ordtypelem.8 | |- ( ph -> R Se A ) |
||
| Assertion | ordtypelem10 | |- ( ph -> O Isom _E , R ( dom O , A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | |- F = recs ( G ) |
|
| 2 | ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
|
| 3 | ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
|
| 4 | ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
|
| 5 | ordtypelem.6 | |- O = OrdIso ( R , A ) |
|
| 6 | ordtypelem.7 | |- ( ph -> R We A ) |
|
| 7 | ordtypelem.8 | |- ( ph -> R Se A ) |
|
| 8 | 1 2 3 4 5 6 7 | ordtypelem8 | |- ( ph -> O Isom _E , R ( dom O , ran O ) ) |
| 9 | 1 2 3 4 5 6 7 | ordtypelem4 | |- ( ph -> O : ( T i^i dom F ) --> A ) |
| 10 | 9 | frnd | |- ( ph -> ran O C_ A ) |
| 11 | simprl | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> b e. A ) |
|
| 12 | 6 | adantr | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> R We A ) |
| 13 | 7 | adantr | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> R Se A ) |
| 14 | 9 | ffund | |- ( ph -> Fun O ) |
| 15 | 14 | funfnd | |- ( ph -> O Fn dom O ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> O Fn dom O ) |
| 17 | 1 2 3 4 5 12 13 | ordtypelem8 | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> O Isom _E , R ( dom O , ran O ) ) |
| 18 | isof1o | |- ( O Isom _E , R ( dom O , ran O ) -> O : dom O -1-1-onto-> ran O ) |
|
| 19 | f1of1 | |- ( O : dom O -1-1-onto-> ran O -> O : dom O -1-1-> ran O ) |
|
| 20 | 17 18 19 | 3syl | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> O : dom O -1-1-> ran O ) |
| 21 | simpl | |- ( ( b e. A /\ -. b e. ran O ) -> b e. A ) |
|
| 22 | seex | |- ( ( R Se A /\ b e. A ) -> { c e. A | c R b } e. _V ) |
|
| 23 | 7 21 22 | syl2an | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> { c e. A | c R b } e. _V ) |
| 24 | 10 | adantr | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> ran O C_ A ) |
| 25 | rexnal | |- ( E. m e. dom O -. ( O ` m ) R b <-> -. A. m e. dom O ( O ` m ) R b ) |
|
| 26 | 1 2 3 4 5 6 7 | ordtypelem7 | |- ( ( ( ph /\ b e. A ) /\ m e. dom O ) -> ( ( O ` m ) R b \/ b e. ran O ) ) |
| 27 | 26 | ord | |- ( ( ( ph /\ b e. A ) /\ m e. dom O ) -> ( -. ( O ` m ) R b -> b e. ran O ) ) |
| 28 | 27 | rexlimdva | |- ( ( ph /\ b e. A ) -> ( E. m e. dom O -. ( O ` m ) R b -> b e. ran O ) ) |
| 29 | 25 28 | biimtrrid | |- ( ( ph /\ b e. A ) -> ( -. A. m e. dom O ( O ` m ) R b -> b e. ran O ) ) |
| 30 | 29 | con1d | |- ( ( ph /\ b e. A ) -> ( -. b e. ran O -> A. m e. dom O ( O ` m ) R b ) ) |
| 31 | 30 | impr | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> A. m e. dom O ( O ` m ) R b ) |
| 32 | breq1 | |- ( c = ( O ` m ) -> ( c R b <-> ( O ` m ) R b ) ) |
|
| 33 | 32 | ralrn | |- ( O Fn dom O -> ( A. c e. ran O c R b <-> A. m e. dom O ( O ` m ) R b ) ) |
| 34 | 16 33 | syl | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> ( A. c e. ran O c R b <-> A. m e. dom O ( O ` m ) R b ) ) |
| 35 | 31 34 | mpbird | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> A. c e. ran O c R b ) |
| 36 | ssrab | |- ( ran O C_ { c e. A | c R b } <-> ( ran O C_ A /\ A. c e. ran O c R b ) ) |
|
| 37 | 24 35 36 | sylanbrc | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> ran O C_ { c e. A | c R b } ) |
| 38 | 23 37 | ssexd | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> ran O e. _V ) |
| 39 | f1dmex | |- ( ( O : dom O -1-1-> ran O /\ ran O e. _V ) -> dom O e. _V ) |
|
| 40 | 20 38 39 | syl2anc | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> dom O e. _V ) |
| 41 | 16 40 | fnexd | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> O e. _V ) |
| 42 | 1 2 3 4 5 12 13 41 | ordtypelem9 | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> O Isom _E , R ( dom O , A ) ) |
| 43 | isof1o | |- ( O Isom _E , R ( dom O , A ) -> O : dom O -1-1-onto-> A ) |
|
| 44 | f1ofo | |- ( O : dom O -1-1-onto-> A -> O : dom O -onto-> A ) |
|
| 45 | forn | |- ( O : dom O -onto-> A -> ran O = A ) |
|
| 46 | 42 43 44 45 | 4syl | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> ran O = A ) |
| 47 | 11 46 | eleqtrrd | |- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> b e. ran O ) |
| 48 | 47 | expr | |- ( ( ph /\ b e. A ) -> ( -. b e. ran O -> b e. ran O ) ) |
| 49 | 48 | pm2.18d | |- ( ( ph /\ b e. A ) -> b e. ran O ) |
| 50 | 10 49 | eqelssd | |- ( ph -> ran O = A ) |
| 51 | isoeq5 | |- ( ran O = A -> ( O Isom _E , R ( dom O , ran O ) <-> O Isom _E , R ( dom O , A ) ) ) |
|
| 52 | 50 51 | syl | |- ( ph -> ( O Isom _E , R ( dom O , ran O ) <-> O Isom _E , R ( dom O , A ) ) ) |
| 53 | 8 52 | mpbid | |- ( ph -> O Isom _E , R ( dom O , A ) ) |