This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . Either the function OrdIso is an isomorphism onto all of A , or OrdIso is not a set, which by oif implies that either ran O C_ A is a proper class or dom O = On . (Contributed by Mario Carneiro, 25-Jun-2015) (Revised by AV, 28-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | ||
| ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | ||
| ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | ||
| ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | ||
| ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | ||
| ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | ||
| ordtypelem9.1 | ⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) | ||
| Assertion | ordtypelem9 | ⊢ ( 𝜑 → 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 3 | ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | |
| 4 | ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | |
| 5 | ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | |
| 6 | ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | |
| 7 | ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | |
| 8 | ordtypelem9.1 | ⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) | |
| 9 | 1 2 3 4 5 6 7 | ordtypelem8 | ⊢ ( 𝜑 → 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ) |
| 10 | 1 2 3 4 5 6 7 | ordtypelem4 | ⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
| 11 | 10 | frnd | ⊢ ( 𝜑 → ran 𝑂 ⊆ 𝐴 ) |
| 12 | 1 2 3 4 5 6 7 | ordtypelem2 | ⊢ ( 𝜑 → Ord 𝑇 ) |
| 13 | ordirr | ⊢ ( Ord 𝑇 → ¬ 𝑇 ∈ 𝑇 ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → ¬ 𝑇 ∈ 𝑇 ) |
| 15 | 1 | tfr1a | ⊢ ( Fun 𝐹 ∧ Lim dom 𝐹 ) |
| 16 | 15 | simpri | ⊢ Lim dom 𝐹 |
| 17 | limord | ⊢ ( Lim dom 𝐹 → Ord dom 𝐹 ) | |
| 18 | 16 17 | ax-mp | ⊢ Ord dom 𝐹 |
| 19 | 1 2 3 4 5 6 7 | ordtypelem1 | ⊢ ( 𝜑 → 𝑂 = ( 𝐹 ↾ 𝑇 ) ) |
| 20 | 8 | elexd | ⊢ ( 𝜑 → 𝑂 ∈ V ) |
| 21 | 19 20 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑇 ) ∈ V ) |
| 22 | 1 | tfr2b | ⊢ ( Ord 𝑇 → ( 𝑇 ∈ dom 𝐹 ↔ ( 𝐹 ↾ 𝑇 ) ∈ V ) ) |
| 23 | 12 22 | syl | ⊢ ( 𝜑 → ( 𝑇 ∈ dom 𝐹 ↔ ( 𝐹 ↾ 𝑇 ) ∈ V ) ) |
| 24 | 21 23 | mpbird | ⊢ ( 𝜑 → 𝑇 ∈ dom 𝐹 ) |
| 25 | ordelon | ⊢ ( ( Ord dom 𝐹 ∧ 𝑇 ∈ dom 𝐹 ) → 𝑇 ∈ On ) | |
| 26 | 18 24 25 | sylancr | ⊢ ( 𝜑 → 𝑇 ∈ On ) |
| 27 | imaeq2 | ⊢ ( 𝑎 = 𝑇 → ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑇 ) ) | |
| 28 | 27 | raleqdv | ⊢ ( 𝑎 = 𝑇 → ( ∀ 𝑐 ∈ ( 𝐹 “ 𝑎 ) 𝑐 𝑅 𝑏 ↔ ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ) ) |
| 29 | 28 | rexbidv | ⊢ ( 𝑎 = 𝑇 → ( ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑎 ) 𝑐 𝑅 𝑏 ↔ ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ) ) |
| 30 | breq1 | ⊢ ( 𝑧 = 𝑐 → ( 𝑧 𝑅 𝑡 ↔ 𝑐 𝑅 𝑡 ) ) | |
| 31 | 30 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∀ 𝑐 ∈ ( 𝐹 “ 𝑥 ) 𝑐 𝑅 𝑡 ) |
| 32 | breq2 | ⊢ ( 𝑡 = 𝑏 → ( 𝑐 𝑅 𝑡 ↔ 𝑐 𝑅 𝑏 ) ) | |
| 33 | 32 | ralbidv | ⊢ ( 𝑡 = 𝑏 → ( ∀ 𝑐 ∈ ( 𝐹 “ 𝑥 ) 𝑐 𝑅 𝑡 ↔ ∀ 𝑐 ∈ ( 𝐹 “ 𝑥 ) 𝑐 𝑅 𝑏 ) ) |
| 34 | 31 33 | bitrid | ⊢ ( 𝑡 = 𝑏 → ( ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∀ 𝑐 ∈ ( 𝐹 “ 𝑥 ) 𝑐 𝑅 𝑏 ) ) |
| 35 | 34 | cbvrexvw | ⊢ ( ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑥 ) 𝑐 𝑅 𝑏 ) |
| 36 | imaeq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑎 ) ) | |
| 37 | 36 | raleqdv | ⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑐 ∈ ( 𝐹 “ 𝑥 ) 𝑐 𝑅 𝑏 ↔ ∀ 𝑐 ∈ ( 𝐹 “ 𝑎 ) 𝑐 𝑅 𝑏 ) ) |
| 38 | 37 | rexbidv | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑥 ) 𝑐 𝑅 𝑏 ↔ ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑎 ) 𝑐 𝑅 𝑏 ) ) |
| 39 | 35 38 | bitrid | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑎 ) 𝑐 𝑅 𝑏 ) ) |
| 40 | 39 | cbvrabv | ⊢ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } = { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑎 ) 𝑐 𝑅 𝑏 } |
| 41 | 4 40 | eqtri | ⊢ 𝑇 = { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑎 ) 𝑐 𝑅 𝑏 } |
| 42 | 29 41 | elrab2 | ⊢ ( 𝑇 ∈ 𝑇 ↔ ( 𝑇 ∈ On ∧ ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ) ) |
| 43 | 42 | baib | ⊢ ( 𝑇 ∈ On → ( 𝑇 ∈ 𝑇 ↔ ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ) ) |
| 44 | 26 43 | syl | ⊢ ( 𝜑 → ( 𝑇 ∈ 𝑇 ↔ ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ) ) |
| 45 | 14 44 | mtbid | ⊢ ( 𝜑 → ¬ ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ) |
| 46 | ralnex | ⊢ ( ∀ 𝑏 ∈ 𝐴 ¬ ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ↔ ¬ ∃ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ) | |
| 47 | 45 46 | sylibr | ⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ¬ ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ) |
| 48 | 47 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ¬ ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ) |
| 49 | 19 | rneqd | ⊢ ( 𝜑 → ran 𝑂 = ran ( 𝐹 ↾ 𝑇 ) ) |
| 50 | df-ima | ⊢ ( 𝐹 “ 𝑇 ) = ran ( 𝐹 ↾ 𝑇 ) | |
| 51 | 49 50 | eqtr4di | ⊢ ( 𝜑 → ran 𝑂 = ( 𝐹 “ 𝑇 ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ran 𝑂 = ( 𝐹 “ 𝑇 ) ) |
| 53 | 52 | raleqdv | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ∀ 𝑐 ∈ ran 𝑂 𝑐 𝑅 𝑏 ↔ ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ) ) |
| 54 | 10 | ffund | ⊢ ( 𝜑 → Fun 𝑂 ) |
| 55 | 54 | funfnd | ⊢ ( 𝜑 → 𝑂 Fn dom 𝑂 ) |
| 56 | 55 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → 𝑂 Fn dom 𝑂 ) |
| 57 | breq1 | ⊢ ( 𝑐 = ( 𝑂 ‘ 𝑚 ) → ( 𝑐 𝑅 𝑏 ↔ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) | |
| 58 | 57 | ralrn | ⊢ ( 𝑂 Fn dom 𝑂 → ( ∀ 𝑐 ∈ ran 𝑂 𝑐 𝑅 𝑏 ↔ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) |
| 59 | 56 58 | syl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ∀ 𝑐 ∈ ran 𝑂 𝑐 𝑅 𝑏 ↔ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) |
| 60 | 53 59 | bitr3d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ∀ 𝑐 ∈ ( 𝐹 “ 𝑇 ) 𝑐 𝑅 𝑏 ↔ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) |
| 61 | 48 60 | mtbid | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ¬ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) |
| 62 | rexnal | ⊢ ( ∃ 𝑚 ∈ dom 𝑂 ¬ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ↔ ¬ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) | |
| 63 | 61 62 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ∃ 𝑚 ∈ dom 𝑂 ¬ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) |
| 64 | 1 2 3 4 5 6 7 | ordtypelem7 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑚 ∈ dom 𝑂 ) → ( ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ∨ 𝑏 ∈ ran 𝑂 ) ) |
| 65 | 64 | ord | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑚 ∈ dom 𝑂 ) → ( ¬ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 → 𝑏 ∈ ran 𝑂 ) ) |
| 66 | 65 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ∃ 𝑚 ∈ dom 𝑂 ¬ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 → 𝑏 ∈ ran 𝑂 ) ) |
| 67 | 63 66 | mpd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → 𝑏 ∈ ran 𝑂 ) |
| 68 | 11 67 | eqelssd | ⊢ ( 𝜑 → ran 𝑂 = 𝐴 ) |
| 69 | isoeq5 | ⊢ ( ran 𝑂 = 𝐴 → ( 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ↔ 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) ) | |
| 70 | 68 69 | syl | ⊢ ( 𝜑 → ( 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ↔ 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) ) |
| 71 | 9 70 | mpbid | ⊢ ( 𝜑 → 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) |