This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isoeq5 | |- ( B = C -> ( H Isom R , S ( A , B ) <-> H Isom R , S ( A , C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq3 | |- ( B = C -> ( H : A -1-1-onto-> B <-> H : A -1-1-onto-> C ) ) |
|
| 2 | 1 | anbi1d | |- ( B = C -> ( ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) <-> ( H : A -1-1-onto-> C /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) ) ) |
| 3 | df-isom | |- ( H Isom R , S ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) ) |
|
| 4 | df-isom | |- ( H Isom R , S ( A , C ) <-> ( H : A -1-1-onto-> C /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) ) |
|
| 5 | 2 3 4 | 3bitr4g | |- ( B = C -> ( H Isom R , S ( A , B ) <-> H Isom R , S ( A , C ) ) ) |