This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "diagonal commutation" of divisor sums analogous to fsum0diag . (Contributed by Mario Carneiro, 2-Jul-2015) (Revised by Mario Carneiro, 8-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumdvdsdiag.1 | |- ( ph -> N e. NN ) |
|
| fsumdvdsdiag.2 | |- ( ( ph /\ ( j e. { x e. NN | x || N } /\ k e. { x e. NN | x || ( N / j ) } ) ) -> A e. CC ) |
||
| Assertion | fsumdvdsdiag | |- ( ph -> sum_ j e. { x e. NN | x || N } sum_ k e. { x e. NN | x || ( N / j ) } A = sum_ k e. { x e. NN | x || N } sum_ j e. { x e. NN | x || ( N / k ) } A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumdvdsdiag.1 | |- ( ph -> N e. NN ) |
|
| 2 | fsumdvdsdiag.2 | |- ( ( ph /\ ( j e. { x e. NN | x || N } /\ k e. { x e. NN | x || ( N / j ) } ) ) -> A e. CC ) |
|
| 3 | fzfid | |- ( ph -> ( 1 ... N ) e. Fin ) |
|
| 4 | dvdsssfz1 | |- ( N e. NN -> { x e. NN | x || N } C_ ( 1 ... N ) ) |
|
| 5 | 1 4 | syl | |- ( ph -> { x e. NN | x || N } C_ ( 1 ... N ) ) |
| 6 | 3 5 | ssfid | |- ( ph -> { x e. NN | x || N } e. Fin ) |
| 7 | fzfid | |- ( ( ph /\ j e. { x e. NN | x || N } ) -> ( 1 ... ( N / j ) ) e. Fin ) |
|
| 8 | ssrab2 | |- { x e. NN | x || N } C_ NN |
|
| 9 | dvdsdivcl | |- ( ( N e. NN /\ j e. { x e. NN | x || N } ) -> ( N / j ) e. { x e. NN | x || N } ) |
|
| 10 | 1 9 | sylan | |- ( ( ph /\ j e. { x e. NN | x || N } ) -> ( N / j ) e. { x e. NN | x || N } ) |
| 11 | 8 10 | sselid | |- ( ( ph /\ j e. { x e. NN | x || N } ) -> ( N / j ) e. NN ) |
| 12 | dvdsssfz1 | |- ( ( N / j ) e. NN -> { x e. NN | x || ( N / j ) } C_ ( 1 ... ( N / j ) ) ) |
|
| 13 | 11 12 | syl | |- ( ( ph /\ j e. { x e. NN | x || N } ) -> { x e. NN | x || ( N / j ) } C_ ( 1 ... ( N / j ) ) ) |
| 14 | 7 13 | ssfid | |- ( ( ph /\ j e. { x e. NN | x || N } ) -> { x e. NN | x || ( N / j ) } e. Fin ) |
| 15 | 1 | fsumdvdsdiaglem | |- ( ph -> ( ( j e. { x e. NN | x || N } /\ k e. { x e. NN | x || ( N / j ) } ) -> ( k e. { x e. NN | x || N } /\ j e. { x e. NN | x || ( N / k ) } ) ) ) |
| 16 | 1 | fsumdvdsdiaglem | |- ( ph -> ( ( k e. { x e. NN | x || N } /\ j e. { x e. NN | x || ( N / k ) } ) -> ( j e. { x e. NN | x || N } /\ k e. { x e. NN | x || ( N / j ) } ) ) ) |
| 17 | 15 16 | impbid | |- ( ph -> ( ( j e. { x e. NN | x || N } /\ k e. { x e. NN | x || ( N / j ) } ) <-> ( k e. { x e. NN | x || N } /\ j e. { x e. NN | x || ( N / k ) } ) ) ) |
| 18 | 6 6 14 17 2 | fsumcom2 | |- ( ph -> sum_ j e. { x e. NN | x || N } sum_ k e. { x e. NN | x || ( N / j ) } A = sum_ k e. { x e. NN | x || N } sum_ j e. { x e. NN | x || ( N / k ) } A ) |