This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complement of a divisor of N is also a divisor of N . (Contributed by Mario Carneiro, 2-Jul-2015) (Proof shortened by AV, 9-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsdivcl | |- ( ( N e. NN /\ A e. { x e. NN | x || N } ) -> ( N / A ) e. { x e. NN | x || N } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( x = A -> ( x || N <-> A || N ) ) |
|
| 2 | 1 | elrab | |- ( A e. { x e. NN | x || N } <-> ( A e. NN /\ A || N ) ) |
| 3 | nndivdvds | |- ( ( N e. NN /\ A e. NN ) -> ( A || N <-> ( N / A ) e. NN ) ) |
|
| 4 | 3 | biimpd | |- ( ( N e. NN /\ A e. NN ) -> ( A || N -> ( N / A ) e. NN ) ) |
| 5 | 4 | expcom | |- ( A e. NN -> ( N e. NN -> ( A || N -> ( N / A ) e. NN ) ) ) |
| 6 | 5 | com23 | |- ( A e. NN -> ( A || N -> ( N e. NN -> ( N / A ) e. NN ) ) ) |
| 7 | 6 | imp | |- ( ( A e. NN /\ A || N ) -> ( N e. NN -> ( N / A ) e. NN ) ) |
| 8 | nnne0 | |- ( A e. NN -> A =/= 0 ) |
|
| 9 | 8 | anim1ci | |- ( ( A e. NN /\ A || N ) -> ( A || N /\ A =/= 0 ) ) |
| 10 | divconjdvds | |- ( ( A || N /\ A =/= 0 ) -> ( N / A ) || N ) |
|
| 11 | 9 10 | syl | |- ( ( A e. NN /\ A || N ) -> ( N / A ) || N ) |
| 12 | 7 11 | jctird | |- ( ( A e. NN /\ A || N ) -> ( N e. NN -> ( ( N / A ) e. NN /\ ( N / A ) || N ) ) ) |
| 13 | 2 12 | sylbi | |- ( A e. { x e. NN | x || N } -> ( N e. NN -> ( ( N / A ) e. NN /\ ( N / A ) || N ) ) ) |
| 14 | 13 | impcom | |- ( ( N e. NN /\ A e. { x e. NN | x || N } ) -> ( ( N / A ) e. NN /\ ( N / A ) || N ) ) |
| 15 | breq1 | |- ( x = ( N / A ) -> ( x || N <-> ( N / A ) || N ) ) |
|
| 16 | 15 | elrab | |- ( ( N / A ) e. { x e. NN | x || N } <-> ( ( N / A ) e. NN /\ ( N / A ) || N ) ) |
| 17 | 14 16 | sylibr | |- ( ( N e. NN /\ A e. { x e. NN | x || N } ) -> ( N / A ) e. { x e. NN | x || N } ) |