This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute function operation through a sequence. Note that G ( z ) is an implicit function on z . (Contributed by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqof.1 | |- ( ph -> A e. V ) |
|
| seqof.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| seqof.3 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) = ( z e. A |-> ( G ` x ) ) ) |
||
| Assertion | seqof | |- ( ph -> ( seq M ( oF .+ , F ) ` N ) = ( z e. A |-> ( seq M ( .+ , G ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqof.1 | |- ( ph -> A e. V ) |
|
| 2 | seqof.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 3 | seqof.3 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) = ( z e. A |-> ( G ` x ) ) ) |
|
| 4 | fvex | |- ( G ` x ) e. _V |
|
| 5 | 4 | rgenw | |- A. z e. A ( G ` x ) e. _V |
| 6 | eqid | |- ( z e. A |-> ( G ` x ) ) = ( z e. A |-> ( G ` x ) ) |
|
| 7 | 6 | fnmpt | |- ( A. z e. A ( G ` x ) e. _V -> ( z e. A |-> ( G ` x ) ) Fn A ) |
| 8 | 5 7 | mp1i | |- ( ( ph /\ x e. ( M ... N ) ) -> ( z e. A |-> ( G ` x ) ) Fn A ) |
| 9 | 3 | fneq1d | |- ( ( ph /\ x e. ( M ... N ) ) -> ( ( F ` x ) Fn A <-> ( z e. A |-> ( G ` x ) ) Fn A ) ) |
| 10 | 8 9 | mpbird | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) Fn A ) |
| 11 | fvex | |- ( F ` x ) e. _V |
|
| 12 | fneq1 | |- ( z = ( F ` x ) -> ( z Fn A <-> ( F ` x ) Fn A ) ) |
|
| 13 | 11 12 | elab | |- ( ( F ` x ) e. { z | z Fn A } <-> ( F ` x ) Fn A ) |
| 14 | 10 13 | sylibr | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. { z | z Fn A } ) |
| 15 | simprl | |- ( ( ph /\ ( x Fn A /\ y Fn A ) ) -> x Fn A ) |
|
| 16 | simprr | |- ( ( ph /\ ( x Fn A /\ y Fn A ) ) -> y Fn A ) |
|
| 17 | 1 | adantr | |- ( ( ph /\ ( x Fn A /\ y Fn A ) ) -> A e. V ) |
| 18 | inidm | |- ( A i^i A ) = A |
|
| 19 | 15 16 17 17 18 | offn | |- ( ( ph /\ ( x Fn A /\ y Fn A ) ) -> ( x oF .+ y ) Fn A ) |
| 20 | 19 | ex | |- ( ph -> ( ( x Fn A /\ y Fn A ) -> ( x oF .+ y ) Fn A ) ) |
| 21 | vex | |- x e. _V |
|
| 22 | fneq1 | |- ( z = x -> ( z Fn A <-> x Fn A ) ) |
|
| 23 | 21 22 | elab | |- ( x e. { z | z Fn A } <-> x Fn A ) |
| 24 | vex | |- y e. _V |
|
| 25 | fneq1 | |- ( z = y -> ( z Fn A <-> y Fn A ) ) |
|
| 26 | 24 25 | elab | |- ( y e. { z | z Fn A } <-> y Fn A ) |
| 27 | 23 26 | anbi12i | |- ( ( x e. { z | z Fn A } /\ y e. { z | z Fn A } ) <-> ( x Fn A /\ y Fn A ) ) |
| 28 | ovex | |- ( x oF .+ y ) e. _V |
|
| 29 | fneq1 | |- ( z = ( x oF .+ y ) -> ( z Fn A <-> ( x oF .+ y ) Fn A ) ) |
|
| 30 | 28 29 | elab | |- ( ( x oF .+ y ) e. { z | z Fn A } <-> ( x oF .+ y ) Fn A ) |
| 31 | 20 27 30 | 3imtr4g | |- ( ph -> ( ( x e. { z | z Fn A } /\ y e. { z | z Fn A } ) -> ( x oF .+ y ) e. { z | z Fn A } ) ) |
| 32 | 31 | imp | |- ( ( ph /\ ( x e. { z | z Fn A } /\ y e. { z | z Fn A } ) ) -> ( x oF .+ y ) e. { z | z Fn A } ) |
| 33 | 2 14 32 | seqcl | |- ( ph -> ( seq M ( oF .+ , F ) ` N ) e. { z | z Fn A } ) |
| 34 | fvex | |- ( seq M ( oF .+ , F ) ` N ) e. _V |
|
| 35 | fneq1 | |- ( z = ( seq M ( oF .+ , F ) ` N ) -> ( z Fn A <-> ( seq M ( oF .+ , F ) ` N ) Fn A ) ) |
|
| 36 | 34 35 | elab | |- ( ( seq M ( oF .+ , F ) ` N ) e. { z | z Fn A } <-> ( seq M ( oF .+ , F ) ` N ) Fn A ) |
| 37 | 33 36 | sylib | |- ( ph -> ( seq M ( oF .+ , F ) ` N ) Fn A ) |
| 38 | dffn5 | |- ( ( seq M ( oF .+ , F ) ` N ) Fn A <-> ( seq M ( oF .+ , F ) ` N ) = ( z e. A |-> ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) ) |
|
| 39 | 37 38 | sylib | |- ( ph -> ( seq M ( oF .+ , F ) ` N ) = ( z e. A |-> ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) ) |
| 40 | fveq1 | |- ( w = ( seq M ( oF .+ , F ) ` N ) -> ( w ` z ) = ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) |
|
| 41 | eqid | |- ( w e. _V |-> ( w ` z ) ) = ( w e. _V |-> ( w ` z ) ) |
|
| 42 | fvex | |- ( ( seq M ( oF .+ , F ) ` N ) ` z ) e. _V |
|
| 43 | 40 41 42 | fvmpt | |- ( ( seq M ( oF .+ , F ) ` N ) e. _V -> ( ( w e. _V |-> ( w ` z ) ) ` ( seq M ( oF .+ , F ) ` N ) ) = ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) |
| 44 | 34 43 | mp1i | |- ( ( ph /\ z e. A ) -> ( ( w e. _V |-> ( w ` z ) ) ` ( seq M ( oF .+ , F ) ` N ) ) = ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) |
| 45 | 32 | adantlr | |- ( ( ( ph /\ z e. A ) /\ ( x e. { z | z Fn A } /\ y e. { z | z Fn A } ) ) -> ( x oF .+ y ) e. { z | z Fn A } ) |
| 46 | 14 | adantlr | |- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. { z | z Fn A } ) |
| 47 | 2 | adantr | |- ( ( ph /\ z e. A ) -> N e. ( ZZ>= ` M ) ) |
| 48 | eqidd | |- ( ( ( ph /\ ( x Fn A /\ y Fn A ) ) /\ z e. A ) -> ( x ` z ) = ( x ` z ) ) |
|
| 49 | eqidd | |- ( ( ( ph /\ ( x Fn A /\ y Fn A ) ) /\ z e. A ) -> ( y ` z ) = ( y ` z ) ) |
|
| 50 | 15 16 17 17 18 48 49 | ofval | |- ( ( ( ph /\ ( x Fn A /\ y Fn A ) ) /\ z e. A ) -> ( ( x oF .+ y ) ` z ) = ( ( x ` z ) .+ ( y ` z ) ) ) |
| 51 | 50 | an32s | |- ( ( ( ph /\ z e. A ) /\ ( x Fn A /\ y Fn A ) ) -> ( ( x oF .+ y ) ` z ) = ( ( x ` z ) .+ ( y ` z ) ) ) |
| 52 | fveq1 | |- ( w = ( x oF .+ y ) -> ( w ` z ) = ( ( x oF .+ y ) ` z ) ) |
|
| 53 | fvex | |- ( ( x oF .+ y ) ` z ) e. _V |
|
| 54 | 52 41 53 | fvmpt | |- ( ( x oF .+ y ) e. _V -> ( ( w e. _V |-> ( w ` z ) ) ` ( x oF .+ y ) ) = ( ( x oF .+ y ) ` z ) ) |
| 55 | 28 54 | ax-mp | |- ( ( w e. _V |-> ( w ` z ) ) ` ( x oF .+ y ) ) = ( ( x oF .+ y ) ` z ) |
| 56 | fveq1 | |- ( w = x -> ( w ` z ) = ( x ` z ) ) |
|
| 57 | fvex | |- ( x ` z ) e. _V |
|
| 58 | 56 41 57 | fvmpt | |- ( x e. _V -> ( ( w e. _V |-> ( w ` z ) ) ` x ) = ( x ` z ) ) |
| 59 | 58 | elv | |- ( ( w e. _V |-> ( w ` z ) ) ` x ) = ( x ` z ) |
| 60 | fveq1 | |- ( w = y -> ( w ` z ) = ( y ` z ) ) |
|
| 61 | fvex | |- ( y ` z ) e. _V |
|
| 62 | 60 41 61 | fvmpt | |- ( y e. _V -> ( ( w e. _V |-> ( w ` z ) ) ` y ) = ( y ` z ) ) |
| 63 | 62 | elv | |- ( ( w e. _V |-> ( w ` z ) ) ` y ) = ( y ` z ) |
| 64 | 59 63 | oveq12i | |- ( ( ( w e. _V |-> ( w ` z ) ) ` x ) .+ ( ( w e. _V |-> ( w ` z ) ) ` y ) ) = ( ( x ` z ) .+ ( y ` z ) ) |
| 65 | 51 55 64 | 3eqtr4g | |- ( ( ( ph /\ z e. A ) /\ ( x Fn A /\ y Fn A ) ) -> ( ( w e. _V |-> ( w ` z ) ) ` ( x oF .+ y ) ) = ( ( ( w e. _V |-> ( w ` z ) ) ` x ) .+ ( ( w e. _V |-> ( w ` z ) ) ` y ) ) ) |
| 66 | 27 65 | sylan2b | |- ( ( ( ph /\ z e. A ) /\ ( x e. { z | z Fn A } /\ y e. { z | z Fn A } ) ) -> ( ( w e. _V |-> ( w ` z ) ) ` ( x oF .+ y ) ) = ( ( ( w e. _V |-> ( w ` z ) ) ` x ) .+ ( ( w e. _V |-> ( w ` z ) ) ` y ) ) ) |
| 67 | fveq1 | |- ( w = ( F ` x ) -> ( w ` z ) = ( ( F ` x ) ` z ) ) |
|
| 68 | fvex | |- ( ( F ` x ) ` z ) e. _V |
|
| 69 | 67 41 68 | fvmpt | |- ( ( F ` x ) e. _V -> ( ( w e. _V |-> ( w ` z ) ) ` ( F ` x ) ) = ( ( F ` x ) ` z ) ) |
| 70 | 11 69 | ax-mp | |- ( ( w e. _V |-> ( w ` z ) ) ` ( F ` x ) ) = ( ( F ` x ) ` z ) |
| 71 | 3 | adantlr | |- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( F ` x ) = ( z e. A |-> ( G ` x ) ) ) |
| 72 | 71 | fveq1d | |- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) ` z ) = ( ( z e. A |-> ( G ` x ) ) ` z ) ) |
| 73 | simplr | |- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> z e. A ) |
|
| 74 | 6 | fvmpt2 | |- ( ( z e. A /\ ( G ` x ) e. _V ) -> ( ( z e. A |-> ( G ` x ) ) ` z ) = ( G ` x ) ) |
| 75 | 73 4 74 | sylancl | |- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( ( z e. A |-> ( G ` x ) ) ` z ) = ( G ` x ) ) |
| 76 | 72 75 | eqtrd | |- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) ` z ) = ( G ` x ) ) |
| 77 | 70 76 | eqtrid | |- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( ( w e. _V |-> ( w ` z ) ) ` ( F ` x ) ) = ( G ` x ) ) |
| 78 | 45 46 47 66 77 | seqhomo | |- ( ( ph /\ z e. A ) -> ( ( w e. _V |-> ( w ` z ) ) ` ( seq M ( oF .+ , F ) ` N ) ) = ( seq M ( .+ , G ) ` N ) ) |
| 79 | 44 78 | eqtr3d | |- ( ( ph /\ z e. A ) -> ( ( seq M ( oF .+ , F ) ` N ) ` z ) = ( seq M ( .+ , G ) ` N ) ) |
| 80 | 79 | mpteq2dva | |- ( ph -> ( z e. A |-> ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) = ( z e. A |-> ( seq M ( .+ , G ) ` N ) ) ) |
| 81 | 39 80 | eqtrd | |- ( ph -> ( seq M ( oF .+ , F ) ` N ) = ( z e. A |-> ( seq M ( .+ , G ) ` N ) ) ) |