This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrbas.s | |- S = ( I mPwSer R ) |
|
| psrbas.k | |- K = ( Base ` R ) |
||
| psrbas.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| psrbas.b | |- B = ( Base ` S ) |
||
| psrelbas.x | |- ( ph -> X e. B ) |
||
| Assertion | psrelbas | |- ( ph -> X : D --> K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbas.s | |- S = ( I mPwSer R ) |
|
| 2 | psrbas.k | |- K = ( Base ` R ) |
|
| 3 | psrbas.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 4 | psrbas.b | |- B = ( Base ` S ) |
|
| 5 | psrelbas.x | |- ( ph -> X e. B ) |
|
| 6 | reldmpsr | |- Rel dom mPwSer |
|
| 7 | 6 1 4 | elbasov | |- ( X e. B -> ( I e. _V /\ R e. _V ) ) |
| 8 | 5 7 | syl | |- ( ph -> ( I e. _V /\ R e. _V ) ) |
| 9 | 8 | simpld | |- ( ph -> I e. _V ) |
| 10 | 1 2 3 4 9 | psrbas | |- ( ph -> B = ( K ^m D ) ) |
| 11 | 5 10 | eleqtrd | |- ( ph -> X e. ( K ^m D ) ) |
| 12 | 2 | fvexi | |- K e. _V |
| 13 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 14 | 3 13 | rabex2 | |- D e. _V |
| 15 | 12 14 | elmap | |- ( X e. ( K ^m D ) <-> X : D --> K ) |
| 16 | 11 15 | sylib | |- ( ph -> X : D --> K ) |