This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | |- S = ( I mPwSer R ) |
|
| psrgrp.i | |- ( ph -> I e. V ) |
||
| psrgrp.r | |- ( ph -> R e. Grp ) |
||
| psrneg.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| psrneg.i | |- N = ( invg ` R ) |
||
| psrneg.b | |- B = ( Base ` S ) |
||
| psrneg.m | |- M = ( invg ` S ) |
||
| psrneg.x | |- ( ph -> X e. B ) |
||
| Assertion | psrneg | |- ( ph -> ( M ` X ) = ( N o. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | |- S = ( I mPwSer R ) |
|
| 2 | psrgrp.i | |- ( ph -> I e. V ) |
|
| 3 | psrgrp.r | |- ( ph -> R e. Grp ) |
|
| 4 | psrneg.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 5 | psrneg.i | |- N = ( invg ` R ) |
|
| 6 | psrneg.b | |- B = ( Base ` S ) |
|
| 7 | psrneg.m | |- M = ( invg ` S ) |
|
| 8 | psrneg.x | |- ( ph -> X e. B ) |
|
| 9 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 10 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 11 | 1 2 3 4 5 6 8 9 10 | psrlinv | |- ( ph -> ( ( N o. X ) ( +g ` S ) X ) = ( D X. { ( 0g ` R ) } ) ) |
| 12 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 13 | 1 2 3 4 9 12 | psr0 | |- ( ph -> ( 0g ` S ) = ( D X. { ( 0g ` R ) } ) ) |
| 14 | 11 13 | eqtr4d | |- ( ph -> ( ( N o. X ) ( +g ` S ) X ) = ( 0g ` S ) ) |
| 15 | 1 2 3 | psrgrp | |- ( ph -> S e. Grp ) |
| 16 | 1 2 3 4 5 6 8 | psrnegcl | |- ( ph -> ( N o. X ) e. B ) |
| 17 | 6 10 12 7 | grpinvid2 | |- ( ( S e. Grp /\ X e. B /\ ( N o. X ) e. B ) -> ( ( M ` X ) = ( N o. X ) <-> ( ( N o. X ) ( +g ` S ) X ) = ( 0g ` S ) ) ) |
| 18 | 15 8 16 17 | syl3anc | |- ( ph -> ( ( M ` X ) = ( N o. X ) <-> ( ( N o. X ) ( +g ` S ) X ) = ( 0g ` S ) ) ) |
| 19 | 14 18 | mpbird | |- ( ph -> ( M ` X ) = ( N o. X ) ) |