This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of the composition of two functions is a subset of the support of the inner function if the outer function preserves zero. Compare suppssfv , which has a sethood condition on A instead of B . (Contributed by SN, 25-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppcoss.f | |- ( ph -> F Fn A ) |
|
| suppcoss.g | |- ( ph -> G : B --> A ) |
||
| suppcoss.b | |- ( ph -> B e. W ) |
||
| suppcoss.y | |- ( ph -> Y e. V ) |
||
| suppcoss.1 | |- ( ph -> ( F ` Y ) = Z ) |
||
| Assertion | suppcoss | |- ( ph -> ( ( F o. G ) supp Z ) C_ ( G supp Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppcoss.f | |- ( ph -> F Fn A ) |
|
| 2 | suppcoss.g | |- ( ph -> G : B --> A ) |
|
| 3 | suppcoss.b | |- ( ph -> B e. W ) |
|
| 4 | suppcoss.y | |- ( ph -> Y e. V ) |
|
| 5 | suppcoss.1 | |- ( ph -> ( F ` Y ) = Z ) |
|
| 6 | dffn3 | |- ( F Fn A <-> F : A --> ran F ) |
|
| 7 | 1 6 | sylib | |- ( ph -> F : A --> ran F ) |
| 8 | 7 2 | fcod | |- ( ph -> ( F o. G ) : B --> ran F ) |
| 9 | eldif | |- ( k e. ( B \ ( G supp Y ) ) <-> ( k e. B /\ -. k e. ( G supp Y ) ) ) |
|
| 10 | 2 | ffnd | |- ( ph -> G Fn B ) |
| 11 | elsuppfn | |- ( ( G Fn B /\ B e. W /\ Y e. V ) -> ( k e. ( G supp Y ) <-> ( k e. B /\ ( G ` k ) =/= Y ) ) ) |
|
| 12 | 10 3 4 11 | syl3anc | |- ( ph -> ( k e. ( G supp Y ) <-> ( k e. B /\ ( G ` k ) =/= Y ) ) ) |
| 13 | 12 | notbid | |- ( ph -> ( -. k e. ( G supp Y ) <-> -. ( k e. B /\ ( G ` k ) =/= Y ) ) ) |
| 14 | 13 | anbi2d | |- ( ph -> ( ( k e. B /\ -. k e. ( G supp Y ) ) <-> ( k e. B /\ -. ( k e. B /\ ( G ` k ) =/= Y ) ) ) ) |
| 15 | annotanannot | |- ( ( k e. B /\ -. ( k e. B /\ ( G ` k ) =/= Y ) ) <-> ( k e. B /\ -. ( G ` k ) =/= Y ) ) |
|
| 16 | 14 15 | bitrdi | |- ( ph -> ( ( k e. B /\ -. k e. ( G supp Y ) ) <-> ( k e. B /\ -. ( G ` k ) =/= Y ) ) ) |
| 17 | 9 16 | bitrid | |- ( ph -> ( k e. ( B \ ( G supp Y ) ) <-> ( k e. B /\ -. ( G ` k ) =/= Y ) ) ) |
| 18 | nne | |- ( -. ( G ` k ) =/= Y <-> ( G ` k ) = Y ) |
|
| 19 | 18 | anbi2i | |- ( ( k e. B /\ -. ( G ` k ) =/= Y ) <-> ( k e. B /\ ( G ` k ) = Y ) ) |
| 20 | 2 | adantr | |- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> G : B --> A ) |
| 21 | simprl | |- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> k e. B ) |
|
| 22 | 20 21 | fvco3d | |- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> ( ( F o. G ) ` k ) = ( F ` ( G ` k ) ) ) |
| 23 | simprr | |- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> ( G ` k ) = Y ) |
|
| 24 | 23 | fveq2d | |- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> ( F ` ( G ` k ) ) = ( F ` Y ) ) |
| 25 | 5 | adantr | |- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> ( F ` Y ) = Z ) |
| 26 | 22 24 25 | 3eqtrd | |- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> ( ( F o. G ) ` k ) = Z ) |
| 27 | 26 | ex | |- ( ph -> ( ( k e. B /\ ( G ` k ) = Y ) -> ( ( F o. G ) ` k ) = Z ) ) |
| 28 | 19 27 | biimtrid | |- ( ph -> ( ( k e. B /\ -. ( G ` k ) =/= Y ) -> ( ( F o. G ) ` k ) = Z ) ) |
| 29 | 17 28 | sylbid | |- ( ph -> ( k e. ( B \ ( G supp Y ) ) -> ( ( F o. G ) ` k ) = Z ) ) |
| 30 | 29 | imp | |- ( ( ph /\ k e. ( B \ ( G supp Y ) ) ) -> ( ( F o. G ) ` k ) = Z ) |
| 31 | 8 30 | suppss | |- ( ph -> ( ( F o. G ) supp Z ) C_ ( G supp Y ) ) |