This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem uneq2

Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993)

Ref Expression
Assertion uneq2
|- ( A = B -> ( C u. A ) = ( C u. B ) )

Proof

Step Hyp Ref Expression
1 uneq1
 |-  ( A = B -> ( A u. C ) = ( B u. C ) )
2 uncom
 |-  ( C u. A ) = ( A u. C )
3 uncom
 |-  ( C u. B ) = ( B u. C )
4 1 2 3 3eqtr4g
 |-  ( A = B -> ( C u. A ) = ( C u. B ) )