This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014) Generalize to magmas. (Revised by SN, 12-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psraddcl.s | |- S = ( I mPwSer R ) |
|
| psraddcl.b | |- B = ( Base ` S ) |
||
| psraddcl.p | |- .+ = ( +g ` S ) |
||
| psraddcl.r | |- ( ph -> R e. Mgm ) |
||
| psraddcl.x | |- ( ph -> X e. B ) |
||
| psraddcl.y | |- ( ph -> Y e. B ) |
||
| Assertion | psraddcl | |- ( ph -> ( X .+ Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psraddcl.s | |- S = ( I mPwSer R ) |
|
| 2 | psraddcl.b | |- B = ( Base ` S ) |
|
| 3 | psraddcl.p | |- .+ = ( +g ` S ) |
|
| 4 | psraddcl.r | |- ( ph -> R e. Mgm ) |
|
| 5 | psraddcl.x | |- ( ph -> X e. B ) |
|
| 6 | psraddcl.y | |- ( ph -> Y e. B ) |
|
| 7 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 8 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 9 | 7 8 | mgmcl | |- ( ( R e. Mgm /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 10 | 9 | 3expb | |- ( ( R e. Mgm /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 11 | 4 10 | sylan | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 12 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 13 | 1 7 12 2 5 | psrelbas | |- ( ph -> X : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 14 | 1 7 12 2 6 | psrelbas | |- ( ph -> Y : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 15 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 16 | 15 | rabex | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
| 17 | 16 | a1i | |- ( ph -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
| 18 | inidm | |- ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } i^i { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 19 | 11 13 14 17 17 18 | off | |- ( ph -> ( X oF ( +g ` R ) Y ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 20 | fvex | |- ( Base ` R ) e. _V |
|
| 21 | 20 16 | elmap | |- ( ( X oF ( +g ` R ) Y ) e. ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) <-> ( X oF ( +g ` R ) Y ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 22 | 19 21 | sylibr | |- ( ph -> ( X oF ( +g ` R ) Y ) e. ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 23 | 1 2 8 3 5 6 | psradd | |- ( ph -> ( X .+ Y ) = ( X oF ( +g ` R ) Y ) ) |
| 24 | reldmpsr | |- Rel dom mPwSer |
|
| 25 | 24 1 2 | elbasov | |- ( X e. B -> ( I e. _V /\ R e. _V ) ) |
| 26 | 5 25 | syl | |- ( ph -> ( I e. _V /\ R e. _V ) ) |
| 27 | 26 | simpld | |- ( ph -> I e. _V ) |
| 28 | 1 7 12 2 27 | psrbas | |- ( ph -> B = ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 29 | 22 23 28 | 3eltr4d | |- ( ph -> ( X .+ Y ) e. B ) |