This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | |- S = ( I mPwSer R ) |
|
| psrgrp.i | |- ( ph -> I e. V ) |
||
| psrgrp.r | |- ( ph -> R e. Grp ) |
||
| psr0cl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| psr0cl.o | |- .0. = ( 0g ` R ) |
||
| psr0cl.b | |- B = ( Base ` S ) |
||
| Assertion | psr0cl | |- ( ph -> ( D X. { .0. } ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | |- S = ( I mPwSer R ) |
|
| 2 | psrgrp.i | |- ( ph -> I e. V ) |
|
| 3 | psrgrp.r | |- ( ph -> R e. Grp ) |
|
| 4 | psr0cl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 5 | psr0cl.o | |- .0. = ( 0g ` R ) |
|
| 6 | psr0cl.b | |- B = ( Base ` S ) |
|
| 7 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 8 | 7 5 | grpidcl | |- ( R e. Grp -> .0. e. ( Base ` R ) ) |
| 9 | fconst6g | |- ( .0. e. ( Base ` R ) -> ( D X. { .0. } ) : D --> ( Base ` R ) ) |
|
| 10 | 3 8 9 | 3syl | |- ( ph -> ( D X. { .0. } ) : D --> ( Base ` R ) ) |
| 11 | fvex | |- ( Base ` R ) e. _V |
|
| 12 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 13 | 4 12 | rabex2 | |- D e. _V |
| 14 | 11 13 | elmap | |- ( ( D X. { .0. } ) e. ( ( Base ` R ) ^m D ) <-> ( D X. { .0. } ) : D --> ( Base ` R ) ) |
| 15 | 10 14 | sylibr | |- ( ph -> ( D X. { .0. } ) e. ( ( Base ` R ) ^m D ) ) |
| 16 | 1 7 4 6 2 | psrbas | |- ( ph -> B = ( ( Base ` R ) ^m D ) ) |
| 17 | 15 16 | eleqtrrd | |- ( ph -> ( D X. { .0. } ) e. B ) |