This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mul02 . Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul02lem2 | |- ( A e. RR -> ( 0 x. A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 | |- 1 =/= 0 |
|
| 2 | ax-1cn | |- 1 e. CC |
|
| 3 | mul02lem1 | |- ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ 1 e. CC ) -> 1 = ( 1 + 1 ) ) |
|
| 4 | 2 3 | mpan2 | |- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> 1 = ( 1 + 1 ) ) |
| 5 | 4 | eqcomd | |- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> ( 1 + 1 ) = 1 ) |
| 6 | 5 | oveq2d | |- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> ( ( _i x. _i ) + ( 1 + 1 ) ) = ( ( _i x. _i ) + 1 ) ) |
| 7 | ax-icn | |- _i e. CC |
|
| 8 | 7 7 | mulcli | |- ( _i x. _i ) e. CC |
| 9 | 8 2 2 | addassi | |- ( ( ( _i x. _i ) + 1 ) + 1 ) = ( ( _i x. _i ) + ( 1 + 1 ) ) |
| 10 | ax-i2m1 | |- ( ( _i x. _i ) + 1 ) = 0 |
|
| 11 | 10 | oveq1i | |- ( ( ( _i x. _i ) + 1 ) + 1 ) = ( 0 + 1 ) |
| 12 | 9 11 | eqtr3i | |- ( ( _i x. _i ) + ( 1 + 1 ) ) = ( 0 + 1 ) |
| 13 | 00id | |- ( 0 + 0 ) = 0 |
|
| 14 | 10 13 | eqtr4i | |- ( ( _i x. _i ) + 1 ) = ( 0 + 0 ) |
| 15 | 6 12 14 | 3eqtr3g | |- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> ( 0 + 1 ) = ( 0 + 0 ) ) |
| 16 | 1re | |- 1 e. RR |
|
| 17 | 0re | |- 0 e. RR |
|
| 18 | readdcan | |- ( ( 1 e. RR /\ 0 e. RR /\ 0 e. RR ) -> ( ( 0 + 1 ) = ( 0 + 0 ) <-> 1 = 0 ) ) |
|
| 19 | 16 17 17 18 | mp3an | |- ( ( 0 + 1 ) = ( 0 + 0 ) <-> 1 = 0 ) |
| 20 | 15 19 | sylib | |- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> 1 = 0 ) |
| 21 | 20 | ex | |- ( A e. RR -> ( ( 0 x. A ) =/= 0 -> 1 = 0 ) ) |
| 22 | 21 | necon1d | |- ( A e. RR -> ( 1 =/= 0 -> ( 0 x. A ) = 0 ) ) |
| 23 | 1 22 | mpi | |- ( A e. RR -> ( 0 x. A ) = 0 ) |