This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmulc2re.1 | |- ( ph -> F e. MblFn ) |
|
| mbfmulc2re.2 | |- ( ph -> B e. RR ) |
||
| mbfmulc2re.3 | |- ( ph -> F : A --> CC ) |
||
| Assertion | mbfmulc2re | |- ( ph -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmulc2re.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | mbfmulc2re.2 | |- ( ph -> B e. RR ) |
|
| 3 | mbfmulc2re.3 | |- ( ph -> F : A --> CC ) |
|
| 4 | 3 | fdmd | |- ( ph -> dom F = A ) |
| 5 | 1 | dmexd | |- ( ph -> dom F e. _V ) |
| 6 | 4 5 | eqeltrrd | |- ( ph -> A e. _V ) |
| 7 | 2 | adantr | |- ( ( ph /\ x e. A ) -> B e. RR ) |
| 8 | 3 | ffvelcdmda | |- ( ( ph /\ x e. A ) -> ( F ` x ) e. CC ) |
| 9 | fconstmpt | |- ( A X. { B } ) = ( x e. A |-> B ) |
|
| 10 | 9 | a1i | |- ( ph -> ( A X. { B } ) = ( x e. A |-> B ) ) |
| 11 | 3 | feqmptd | |- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |
| 12 | 6 7 8 10 11 | offval2 | |- ( ph -> ( ( A X. { B } ) oF x. F ) = ( x e. A |-> ( B x. ( F ` x ) ) ) ) |
| 13 | 7 8 | remul2d | |- ( ( ph /\ x e. A ) -> ( Re ` ( B x. ( F ` x ) ) ) = ( B x. ( Re ` ( F ` x ) ) ) ) |
| 14 | 13 | mpteq2dva | |- ( ph -> ( x e. A |-> ( Re ` ( B x. ( F ` x ) ) ) ) = ( x e. A |-> ( B x. ( Re ` ( F ` x ) ) ) ) ) |
| 15 | 8 | recld | |- ( ( ph /\ x e. A ) -> ( Re ` ( F ` x ) ) e. RR ) |
| 16 | eqidd | |- ( ph -> ( x e. A |-> ( Re ` ( F ` x ) ) ) = ( x e. A |-> ( Re ` ( F ` x ) ) ) ) |
|
| 17 | 6 7 15 10 16 | offval2 | |- ( ph -> ( ( A X. { B } ) oF x. ( x e. A |-> ( Re ` ( F ` x ) ) ) ) = ( x e. A |-> ( B x. ( Re ` ( F ` x ) ) ) ) ) |
| 18 | 14 17 | eqtr4d | |- ( ph -> ( x e. A |-> ( Re ` ( B x. ( F ` x ) ) ) ) = ( ( A X. { B } ) oF x. ( x e. A |-> ( Re ` ( F ` x ) ) ) ) ) |
| 19 | 11 1 | eqeltrrd | |- ( ph -> ( x e. A |-> ( F ` x ) ) e. MblFn ) |
| 20 | 8 | ismbfcn2 | |- ( ph -> ( ( x e. A |-> ( F ` x ) ) e. MblFn <-> ( ( x e. A |-> ( Re ` ( F ` x ) ) ) e. MblFn /\ ( x e. A |-> ( Im ` ( F ` x ) ) ) e. MblFn ) ) ) |
| 21 | 19 20 | mpbid | |- ( ph -> ( ( x e. A |-> ( Re ` ( F ` x ) ) ) e. MblFn /\ ( x e. A |-> ( Im ` ( F ` x ) ) ) e. MblFn ) ) |
| 22 | 21 | simpld | |- ( ph -> ( x e. A |-> ( Re ` ( F ` x ) ) ) e. MblFn ) |
| 23 | 15 | fmpttd | |- ( ph -> ( x e. A |-> ( Re ` ( F ` x ) ) ) : A --> RR ) |
| 24 | 22 2 23 | mbfmulc2lem | |- ( ph -> ( ( A X. { B } ) oF x. ( x e. A |-> ( Re ` ( F ` x ) ) ) ) e. MblFn ) |
| 25 | 18 24 | eqeltrd | |- ( ph -> ( x e. A |-> ( Re ` ( B x. ( F ` x ) ) ) ) e. MblFn ) |
| 26 | 7 8 | immul2d | |- ( ( ph /\ x e. A ) -> ( Im ` ( B x. ( F ` x ) ) ) = ( B x. ( Im ` ( F ` x ) ) ) ) |
| 27 | 26 | mpteq2dva | |- ( ph -> ( x e. A |-> ( Im ` ( B x. ( F ` x ) ) ) ) = ( x e. A |-> ( B x. ( Im ` ( F ` x ) ) ) ) ) |
| 28 | 8 | imcld | |- ( ( ph /\ x e. A ) -> ( Im ` ( F ` x ) ) e. RR ) |
| 29 | eqidd | |- ( ph -> ( x e. A |-> ( Im ` ( F ` x ) ) ) = ( x e. A |-> ( Im ` ( F ` x ) ) ) ) |
|
| 30 | 6 7 28 10 29 | offval2 | |- ( ph -> ( ( A X. { B } ) oF x. ( x e. A |-> ( Im ` ( F ` x ) ) ) ) = ( x e. A |-> ( B x. ( Im ` ( F ` x ) ) ) ) ) |
| 31 | 27 30 | eqtr4d | |- ( ph -> ( x e. A |-> ( Im ` ( B x. ( F ` x ) ) ) ) = ( ( A X. { B } ) oF x. ( x e. A |-> ( Im ` ( F ` x ) ) ) ) ) |
| 32 | 21 | simprd | |- ( ph -> ( x e. A |-> ( Im ` ( F ` x ) ) ) e. MblFn ) |
| 33 | 28 | fmpttd | |- ( ph -> ( x e. A |-> ( Im ` ( F ` x ) ) ) : A --> RR ) |
| 34 | 32 2 33 | mbfmulc2lem | |- ( ph -> ( ( A X. { B } ) oF x. ( x e. A |-> ( Im ` ( F ` x ) ) ) ) e. MblFn ) |
| 35 | 31 34 | eqeltrd | |- ( ph -> ( x e. A |-> ( Im ` ( B x. ( F ` x ) ) ) ) e. MblFn ) |
| 36 | 2 | recnd | |- ( ph -> B e. CC ) |
| 37 | 36 | adantr | |- ( ( ph /\ x e. A ) -> B e. CC ) |
| 38 | 37 8 | mulcld | |- ( ( ph /\ x e. A ) -> ( B x. ( F ` x ) ) e. CC ) |
| 39 | 38 | ismbfcn2 | |- ( ph -> ( ( x e. A |-> ( B x. ( F ` x ) ) ) e. MblFn <-> ( ( x e. A |-> ( Re ` ( B x. ( F ` x ) ) ) ) e. MblFn /\ ( x e. A |-> ( Im ` ( B x. ( F ` x ) ) ) ) e. MblFn ) ) ) |
| 40 | 25 35 39 | mpbir2and | |- ( ph -> ( x e. A |-> ( B x. ( F ` x ) ) ) e. MblFn ) |
| 41 | 12 40 | eqeltrd | |- ( ph -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |