This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | map2psrpr.2 | |- C e. R. |
|
| Assertion | map2psrpr | |- ( ( C +R -1R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | map2psrpr.2 | |- C e. R. |
|
| 2 | ltrelsr | |- |
|
| 3 | 2 | brel | |- ( ( C +R -1R ) |
| 4 | 3 | simprd | |- ( ( C +R -1R ) |
| 5 | ltasr | |- ( C e. R. -> ( -1R |
|
| 6 | 1 5 | ax-mp | |- ( -1R |
| 7 | pn0sr | |- ( C e. R. -> ( C +R ( C .R -1R ) ) = 0R ) |
|
| 8 | 1 7 | ax-mp | |- ( C +R ( C .R -1R ) ) = 0R |
| 9 | 8 | oveq1i | |- ( ( C +R ( C .R -1R ) ) +R A ) = ( 0R +R A ) |
| 10 | addasssr | |- ( ( C +R ( C .R -1R ) ) +R A ) = ( C +R ( ( C .R -1R ) +R A ) ) |
|
| 11 | addcomsr | |- ( 0R +R A ) = ( A +R 0R ) |
|
| 12 | 9 10 11 | 3eqtr3i | |- ( C +R ( ( C .R -1R ) +R A ) ) = ( A +R 0R ) |
| 13 | 0idsr | |- ( A e. R. -> ( A +R 0R ) = A ) |
|
| 14 | 12 13 | eqtrid | |- ( A e. R. -> ( C +R ( ( C .R -1R ) +R A ) ) = A ) |
| 15 | 14 | breq2d | |- ( A e. R. -> ( ( C +R -1R ) |
| 16 | 6 15 | bitrid | |- ( A e. R. -> ( -1R |
| 17 | m1r | |- -1R e. R. |
|
| 18 | mulclsr | |- ( ( C e. R. /\ -1R e. R. ) -> ( C .R -1R ) e. R. ) |
|
| 19 | 1 17 18 | mp2an | |- ( C .R -1R ) e. R. |
| 20 | addclsr | |- ( ( ( C .R -1R ) e. R. /\ A e. R. ) -> ( ( C .R -1R ) +R A ) e. R. ) |
|
| 21 | 19 20 | mpan | |- ( A e. R. -> ( ( C .R -1R ) +R A ) e. R. ) |
| 22 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 23 | breq2 | |- ( [ <. y , z >. ] ~R = ( ( C .R -1R ) +R A ) -> ( -1R |
|
| 24 | eqeq2 | |- ( [ <. y , z >. ] ~R = ( ( C .R -1R ) +R A ) -> ( [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) ) ) |
|
| 25 | 24 | rexbidv | |- ( [ <. y , z >. ] ~R = ( ( C .R -1R ) +R A ) -> ( E. x e. P. [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> E. x e. P. [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) ) ) |
| 26 | 23 25 | imbi12d | |- ( [ <. y , z >. ] ~R = ( ( C .R -1R ) +R A ) -> ( ( -1R |
| 27 | df-m1r | |- -1R = [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
|
| 28 | 27 | breq1i | |- ( -1R |
| 29 | addasspr | |- ( ( 1P +P. 1P ) +P. y ) = ( 1P +P. ( 1P +P. y ) ) |
|
| 30 | 29 | breq2i | |- ( ( 1P +P. z ) |
| 31 | ltsrpr | |- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
|
| 32 | 1pr | |- 1P e. P. |
|
| 33 | ltapr | |- ( 1P e. P. -> ( z |
|
| 34 | 32 33 | ax-mp | |- ( z |
| 35 | 30 31 34 | 3bitr4i | |- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
| 36 | 28 35 | bitri | |- ( -1R |
| 37 | ltexpri | |- ( z |
|
| 38 | 36 37 | sylbi | |- ( -1R |
| 39 | enreceq | |- ( ( ( x e. P. /\ 1P e. P. ) /\ ( y e. P. /\ z e. P. ) ) -> ( [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> ( x +P. z ) = ( 1P +P. y ) ) ) |
|
| 40 | 32 39 | mpanl2 | |- ( ( x e. P. /\ ( y e. P. /\ z e. P. ) ) -> ( [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> ( x +P. z ) = ( 1P +P. y ) ) ) |
| 41 | addcompr | |- ( z +P. x ) = ( x +P. z ) |
|
| 42 | 41 | eqeq1i | |- ( ( z +P. x ) = ( 1P +P. y ) <-> ( x +P. z ) = ( 1P +P. y ) ) |
| 43 | 40 42 | bitr4di | |- ( ( x e. P. /\ ( y e. P. /\ z e. P. ) ) -> ( [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> ( z +P. x ) = ( 1P +P. y ) ) ) |
| 44 | 43 | ancoms | |- ( ( ( y e. P. /\ z e. P. ) /\ x e. P. ) -> ( [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> ( z +P. x ) = ( 1P +P. y ) ) ) |
| 45 | 44 | rexbidva | |- ( ( y e. P. /\ z e. P. ) -> ( E. x e. P. [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> E. x e. P. ( z +P. x ) = ( 1P +P. y ) ) ) |
| 46 | 38 45 | imbitrrid | |- ( ( y e. P. /\ z e. P. ) -> ( -1R |
| 47 | 22 26 46 | ecoptocl | |- ( ( ( C .R -1R ) +R A ) e. R. -> ( -1R |
| 48 | 21 47 | syl | |- ( A e. R. -> ( -1R |
| 49 | oveq2 | |- ( [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) -> ( C +R [ <. x , 1P >. ] ~R ) = ( C +R ( ( C .R -1R ) +R A ) ) ) |
|
| 50 | 49 14 | sylan9eqr | |- ( ( A e. R. /\ [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) ) -> ( C +R [ <. x , 1P >. ] ~R ) = A ) |
| 51 | 50 | ex | |- ( A e. R. -> ( [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) -> ( C +R [ <. x , 1P >. ] ~R ) = A ) ) |
| 52 | 51 | reximdv | |- ( A e. R. -> ( E. x e. P. [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) -> E. x e. P. ( C +R [ <. x , 1P >. ] ~R ) = A ) ) |
| 53 | 48 52 | syld | |- ( A e. R. -> ( -1R |
| 54 | 16 53 | sylbird | |- ( A e. R. -> ( ( C +R -1R ) |
| 55 | 4 54 | mpcom | |- ( ( C +R -1R ) |
| 56 | 1 | mappsrpr | |- ( ( C +R -1R ) |
| 57 | breq2 | |- ( ( C +R [ <. x , 1P >. ] ~R ) = A -> ( ( C +R -1R ) |
|
| 58 | 56 57 | bitr3id | |- ( ( C +R [ <. x , 1P >. ] ~R ) = A -> ( x e. P. <-> ( C +R -1R ) |
| 59 | 58 | biimpac | |- ( ( x e. P. /\ ( C +R [ <. x , 1P >. ] ~R ) = A ) -> ( C +R -1R ) |
| 60 | 59 | rexlimiva | |- ( E. x e. P. ( C +R [ <. x , 1P >. ] ~R ) = A -> ( C +R -1R ) |
| 61 | 55 60 | impbii | |- ( ( C +R -1R ) |