This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addclsr | |- ( ( A e. R. /\ B e. R. ) -> ( A +R B ) e. R. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | oveq1 | |- ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) = ( A +R [ <. z , w >. ] ~R ) ) |
|
| 3 | 2 | eleq1d | |- ( [ <. x , y >. ] ~R = A -> ( ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) <-> ( A +R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) ) ) |
| 4 | oveq2 | |- ( [ <. z , w >. ] ~R = B -> ( A +R [ <. z , w >. ] ~R ) = ( A +R B ) ) |
|
| 5 | 4 | eleq1d | |- ( [ <. z , w >. ] ~R = B -> ( ( A +R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) <-> ( A +R B ) e. ( ( P. X. P. ) /. ~R ) ) ) |
| 6 | addsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) = [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R ) |
|
| 7 | addclpr | |- ( ( x e. P. /\ z e. P. ) -> ( x +P. z ) e. P. ) |
|
| 8 | addclpr | |- ( ( y e. P. /\ w e. P. ) -> ( y +P. w ) e. P. ) |
|
| 9 | 7 8 | anim12i | |- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) ) |
| 10 | 9 | an4s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) ) |
| 11 | opelxpi | |- ( ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) -> <. ( x +P. z ) , ( y +P. w ) >. e. ( P. X. P. ) ) |
|
| 12 | enrex | |- ~R e. _V |
|
| 13 | 12 | ecelqsi | |- ( <. ( x +P. z ) , ( y +P. w ) >. e. ( P. X. P. ) -> [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 14 | 10 11 13 | 3syl | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 15 | 6 14 | eqeltrd | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) ) |
| 16 | 1 3 5 15 | 2ecoptocl | |- ( ( A e. R. /\ B e. R. ) -> ( A +R B ) e. ( ( P. X. P. ) /. ~R ) ) |
| 17 | 16 1 | eleqtrrdi | |- ( ( A e. R. /\ B e. R. ) -> ( A +R B ) e. R. ) |