This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addasssr | |- ( ( A +R B ) +R C ) = ( A +R ( B +R C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | addsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) = [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R ) |
|
| 3 | addsrpr | |- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. z , w >. ] ~R +R [ <. v , u >. ] ~R ) = [ <. ( z +P. v ) , ( w +P. u ) >. ] ~R ) |
|
| 4 | addsrpr | |- ( ( ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R +R [ <. v , u >. ] ~R ) = [ <. ( ( x +P. z ) +P. v ) , ( ( y +P. w ) +P. u ) >. ] ~R ) |
|
| 5 | addsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. ( z +P. v ) , ( w +P. u ) >. ] ~R ) = [ <. ( x +P. ( z +P. v ) ) , ( y +P. ( w +P. u ) ) >. ] ~R ) |
|
| 6 | addclpr | |- ( ( x e. P. /\ z e. P. ) -> ( x +P. z ) e. P. ) |
|
| 7 | addclpr | |- ( ( y e. P. /\ w e. P. ) -> ( y +P. w ) e. P. ) |
|
| 8 | 6 7 | anim12i | |- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) ) |
| 9 | 8 | an4s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) ) |
| 10 | addclpr | |- ( ( z e. P. /\ v e. P. ) -> ( z +P. v ) e. P. ) |
|
| 11 | addclpr | |- ( ( w e. P. /\ u e. P. ) -> ( w +P. u ) e. P. ) |
|
| 12 | 10 11 | anim12i | |- ( ( ( z e. P. /\ v e. P. ) /\ ( w e. P. /\ u e. P. ) ) -> ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) |
| 13 | 12 | an4s | |- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) |
| 14 | addasspr | |- ( ( x +P. z ) +P. v ) = ( x +P. ( z +P. v ) ) |
|
| 15 | addasspr | |- ( ( y +P. w ) +P. u ) = ( y +P. ( w +P. u ) ) |
|
| 16 | 1 2 3 4 5 9 13 14 15 | ecovass | |- ( ( A e. R. /\ B e. R. /\ C e. R. ) -> ( ( A +R B ) +R C ) = ( A +R ( B +R C ) ) ) |
| 17 | dmaddsr | |- dom +R = ( R. X. R. ) |
|
| 18 | 0nsr | |- -. (/) e. R. |
|
| 19 | 17 18 | ndmovass | |- ( -. ( A e. R. /\ B e. R. /\ C e. R. ) -> ( ( A +R B ) +R C ) = ( A +R ( B +R C ) ) ) |
| 20 | 16 19 | pm2.61i | |- ( ( A +R B ) +R C ) = ( A +R ( B +R C ) ) |