This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enreceq | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( [ <. A , B >. ] ~R = [ <. C , D >. ] ~R <-> ( A +P. D ) = ( B +P. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrer | |- ~R Er ( P. X. P. ) |
|
| 2 | 1 | a1i | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ~R Er ( P. X. P. ) ) |
| 3 | opelxpi | |- ( ( A e. P. /\ B e. P. ) -> <. A , B >. e. ( P. X. P. ) ) |
|
| 4 | 3 | adantr | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> <. A , B >. e. ( P. X. P. ) ) |
| 5 | 2 4 | erth | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( <. A , B >. ~R <. C , D >. <-> [ <. A , B >. ] ~R = [ <. C , D >. ] ~R ) ) |
| 6 | enrbreq | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( <. A , B >. ~R <. C , D >. <-> ( A +P. D ) = ( B +P. C ) ) ) |
|
| 7 | 5 6 | bitr3d | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( [ <. A , B >. ] ~R = [ <. C , D >. ] ~R <-> ( A +P. D ) = ( B +P. C ) ) ) |