This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 13-May-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltexpri | |- ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpr | |- |
|
| 2 | 1 | brel | |- ( A |
| 3 | ltprord | |- ( ( A e. P. /\ B e. P. ) -> ( A |
|
| 4 | oveq2 | |- ( y = z -> ( w +Q y ) = ( w +Q z ) ) |
|
| 5 | 4 | eleq1d | |- ( y = z -> ( ( w +Q y ) e. B <-> ( w +Q z ) e. B ) ) |
| 6 | 5 | anbi2d | |- ( y = z -> ( ( -. w e. A /\ ( w +Q y ) e. B ) <-> ( -. w e. A /\ ( w +Q z ) e. B ) ) ) |
| 7 | 6 | exbidv | |- ( y = z -> ( E. w ( -. w e. A /\ ( w +Q y ) e. B ) <-> E. w ( -. w e. A /\ ( w +Q z ) e. B ) ) ) |
| 8 | 7 | cbvabv | |- { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } = { z | E. w ( -. w e. A /\ ( w +Q z ) e. B ) } |
| 9 | 8 | ltexprlem5 | |- ( ( B e. P. /\ A C. B ) -> { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } e. P. ) |
| 10 | 9 | adantll | |- ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } e. P. ) |
| 11 | 8 | ltexprlem6 | |- ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> ( A +P. { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } ) C_ B ) |
| 12 | 8 | ltexprlem7 | |- ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> B C_ ( A +P. { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } ) ) |
| 13 | 11 12 | eqssd | |- ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> ( A +P. { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } ) = B ) |
| 14 | oveq2 | |- ( x = { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } -> ( A +P. x ) = ( A +P. { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } ) ) |
|
| 15 | 14 | eqeq1d | |- ( x = { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } -> ( ( A +P. x ) = B <-> ( A +P. { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } ) = B ) ) |
| 16 | 15 | rspcev | |- ( ( { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } e. P. /\ ( A +P. { y | E. w ( -. w e. A /\ ( w +Q y ) e. B ) } ) = B ) -> E. x e. P. ( A +P. x ) = B ) |
| 17 | 10 13 16 | syl2anc | |- ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> E. x e. P. ( A +P. x ) = B ) |
| 18 | 17 | ex | |- ( ( A e. P. /\ B e. P. ) -> ( A C. B -> E. x e. P. ( A +P. x ) = B ) ) |
| 19 | 3 18 | sylbid | |- ( ( A e. P. /\ B e. P. ) -> ( A |
| 20 | 2 19 | mpcom | |- ( A |