This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition. Proposition 9-3.5(v) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltapr | |- ( C e. P. -> ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmplp | |- dom +P. = ( P. X. P. ) |
|
| 2 | ltrelpr | |- |
|
| 3 | 0npr | |- -. (/) e. P. |
|
| 4 | ltaprlem | |- ( C e. P. -> ( A |
|
| 5 | 4 | adantr | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( A |
| 6 | olc | |- ( ( C +P. A ) |
|
| 7 | ltaprlem | |- ( C e. P. -> ( B |
|
| 8 | 7 | adantr | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( B |
| 9 | ltsopr | |- |
|
| 10 | sotric | |- ( ( |
|
| 11 | 9 10 | mpan | |- ( ( B e. P. /\ A e. P. ) -> ( B |
| 12 | 11 | adantl | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( B |
| 13 | addclpr | |- ( ( C e. P. /\ B e. P. ) -> ( C +P. B ) e. P. ) |
|
| 14 | addclpr | |- ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) e. P. ) |
|
| 15 | 13 14 | anim12dan | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( C +P. B ) e. P. /\ ( C +P. A ) e. P. ) ) |
| 16 | sotric | |- ( ( |
|
| 17 | 9 15 16 | sylancr | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( C +P. B ) |
| 18 | 8 12 17 | 3imtr3d | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( -. ( B = A \/ A |
| 19 | 18 | con4d | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( ( C +P. B ) = ( C +P. A ) \/ ( C +P. A ) |
| 20 | 6 19 | syl5 | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( C +P. A ) |
| 21 | df-or | |- ( ( B = A \/ A |
|
| 22 | 20 21 | imbitrdi | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( C +P. A ) |
| 23 | 22 | com23 | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( -. B = A -> ( ( C +P. A ) |
| 24 | 9 2 | soirri | |- -. ( C +P. A ) |
| 25 | oveq2 | |- ( B = A -> ( C +P. B ) = ( C +P. A ) ) |
|
| 26 | 25 | breq2d | |- ( B = A -> ( ( C +P. A ) |
| 27 | 24 26 | mtbiri | |- ( B = A -> -. ( C +P. A ) |
| 28 | 27 | pm2.21d | |- ( B = A -> ( ( C +P. A ) |
| 29 | 23 28 | pm2.61d2 | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( C +P. A ) |
| 30 | 5 29 | impbid | |- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( A |
| 31 | 30 | 3impb | |- ( ( C e. P. /\ B e. P. /\ A e. P. ) -> ( A |
| 32 | 31 | 3com13 | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( A |
| 33 | 1 2 3 32 | ndmovord | |- ( C e. P. -> ( A |