This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mappsrpr.2 | |- C e. R. |
|
| Assertion | mappsrpr | |- ( ( C +R -1R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mappsrpr.2 | |- C e. R. |
|
| 2 | df-m1r | |- -1R = [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
|
| 3 | 2 | breq1i | |- ( -1R |
| 4 | ltsrpr | |- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
|
| 5 | 3 4 | bitri | |- ( -1R |
| 6 | ltasr | |- ( C e. R. -> ( -1R |
|
| 7 | 1 6 | ax-mp | |- ( -1R |
| 8 | ltrelpr | |- |
|
| 9 | 8 | brel | |- ( ( 1P +P. 1P ) |
| 10 | dmplp | |- dom +P. = ( P. X. P. ) |
|
| 11 | 0npr | |- -. (/) e. P. |
|
| 12 | 10 11 | ndmovrcl | |- ( ( ( 1P +P. 1P ) +P. A ) e. P. -> ( ( 1P +P. 1P ) e. P. /\ A e. P. ) ) |
| 13 | 12 | simprd | |- ( ( ( 1P +P. 1P ) +P. A ) e. P. -> A e. P. ) |
| 14 | 9 13 | simpl2im | |- ( ( 1P +P. 1P ) |
| 15 | 1pr | |- 1P e. P. |
|
| 16 | addclpr | |- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
|
| 17 | 15 15 16 | mp2an | |- ( 1P +P. 1P ) e. P. |
| 18 | ltaddpr | |- ( ( ( 1P +P. 1P ) e. P. /\ A e. P. ) -> ( 1P +P. 1P ) |
|
| 19 | 17 18 | mpan | |- ( A e. P. -> ( 1P +P. 1P ) |
| 20 | 14 19 | impbii | |- ( ( 1P +P. 1P ) |
| 21 | 5 7 20 | 3bitr3i | |- ( ( C +R -1R ) |