This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecoptocl.1 | |- S = ( ( B X. C ) /. R ) |
|
| ecoptocl.2 | |- ( [ <. x , y >. ] R = A -> ( ph <-> ps ) ) |
||
| ecoptocl.3 | |- ( ( x e. B /\ y e. C ) -> ph ) |
||
| Assertion | ecoptocl | |- ( A e. S -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecoptocl.1 | |- S = ( ( B X. C ) /. R ) |
|
| 2 | ecoptocl.2 | |- ( [ <. x , y >. ] R = A -> ( ph <-> ps ) ) |
|
| 3 | ecoptocl.3 | |- ( ( x e. B /\ y e. C ) -> ph ) |
|
| 4 | elqsi | |- ( A e. ( ( B X. C ) /. R ) -> E. z e. ( B X. C ) A = [ z ] R ) |
|
| 5 | eqid | |- ( B X. C ) = ( B X. C ) |
|
| 6 | eceq1 | |- ( <. x , y >. = z -> [ <. x , y >. ] R = [ z ] R ) |
|
| 7 | 6 | eqeq2d | |- ( <. x , y >. = z -> ( A = [ <. x , y >. ] R <-> A = [ z ] R ) ) |
| 8 | 7 | imbi1d | |- ( <. x , y >. = z -> ( ( A = [ <. x , y >. ] R -> ps ) <-> ( A = [ z ] R -> ps ) ) ) |
| 9 | 2 | eqcoms | |- ( A = [ <. x , y >. ] R -> ( ph <-> ps ) ) |
| 10 | 3 9 | syl5ibcom | |- ( ( x e. B /\ y e. C ) -> ( A = [ <. x , y >. ] R -> ps ) ) |
| 11 | 5 8 10 | optocl | |- ( z e. ( B X. C ) -> ( A = [ z ] R -> ps ) ) |
| 12 | 11 | rexlimiv | |- ( E. z e. ( B X. C ) A = [ z ] R -> ps ) |
| 13 | 4 12 | syl | |- ( A e. ( ( B X. C ) /. R ) -> ps ) |
| 14 | 13 1 | eleq2s | |- ( A e. S -> ps ) |