This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltsrpr | |- ( [ <. A , B >. ] ~R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrer | |- ~R Er ( P. X. P. ) |
|
| 2 | erdm | |- ( ~R Er ( P. X. P. ) -> dom ~R = ( P. X. P. ) ) |
|
| 3 | 1 2 | ax-mp | |- dom ~R = ( P. X. P. ) |
| 4 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 5 | ltrelsr | |- |
|
| 6 | ltrelpr | |- |
|
| 7 | 0npr | |- -. (/) e. P. |
|
| 8 | dmplp | |- dom +P. = ( P. X. P. ) |
|
| 9 | enrex | |- ~R e. _V |
|
| 10 | df-ltr | |- |
|
| 11 | addclpr | |- ( ( w e. P. /\ v e. P. ) -> ( w +P. v ) e. P. ) |
|
| 12 | 11 | ad2ant2lr | |- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( w +P. v ) e. P. ) |
| 13 | addclpr | |- ( ( B e. P. /\ C e. P. ) -> ( B +P. C ) e. P. ) |
|
| 14 | 13 | ad2ant2lr | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( B +P. C ) e. P. ) |
| 15 | 12 14 | anim12ci | |- ( ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) /\ ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) ) -> ( ( B +P. C ) e. P. /\ ( w +P. v ) e. P. ) ) |
| 16 | 15 | an4s | |- ( ( ( ( z e. P. /\ w e. P. ) /\ ( A e. P. /\ B e. P. ) ) /\ ( ( v e. P. /\ u e. P. ) /\ ( C e. P. /\ D e. P. ) ) ) -> ( ( B +P. C ) e. P. /\ ( w +P. v ) e. P. ) ) |
| 17 | enreceq | |- ( ( ( z e. P. /\ w e. P. ) /\ ( A e. P. /\ B e. P. ) ) -> ( [ <. z , w >. ] ~R = [ <. A , B >. ] ~R <-> ( z +P. B ) = ( w +P. A ) ) ) |
|
| 18 | enreceq | |- ( ( ( v e. P. /\ u e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( [ <. v , u >. ] ~R = [ <. C , D >. ] ~R <-> ( v +P. D ) = ( u +P. C ) ) ) |
|
| 19 | eqcom | |- ( ( v +P. D ) = ( u +P. C ) <-> ( u +P. C ) = ( v +P. D ) ) |
|
| 20 | 18 19 | bitrdi | |- ( ( ( v e. P. /\ u e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( [ <. v , u >. ] ~R = [ <. C , D >. ] ~R <-> ( u +P. C ) = ( v +P. D ) ) ) |
| 21 | 17 20 | bi2anan9 | |- ( ( ( ( z e. P. /\ w e. P. ) /\ ( A e. P. /\ B e. P. ) ) /\ ( ( v e. P. /\ u e. P. ) /\ ( C e. P. /\ D e. P. ) ) ) -> ( ( [ <. z , w >. ] ~R = [ <. A , B >. ] ~R /\ [ <. v , u >. ] ~R = [ <. C , D >. ] ~R ) <-> ( ( z +P. B ) = ( w +P. A ) /\ ( u +P. C ) = ( v +P. D ) ) ) ) |
| 22 | oveq12 | |- ( ( ( z +P. B ) = ( w +P. A ) /\ ( u +P. C ) = ( v +P. D ) ) -> ( ( z +P. B ) +P. ( u +P. C ) ) = ( ( w +P. A ) +P. ( v +P. D ) ) ) |
|
| 23 | addcompr | |- ( u +P. B ) = ( B +P. u ) |
|
| 24 | 23 | oveq1i | |- ( ( u +P. B ) +P. C ) = ( ( B +P. u ) +P. C ) |
| 25 | addasspr | |- ( ( u +P. B ) +P. C ) = ( u +P. ( B +P. C ) ) |
|
| 26 | addasspr | |- ( ( B +P. u ) +P. C ) = ( B +P. ( u +P. C ) ) |
|
| 27 | 24 25 26 | 3eqtr3i | |- ( u +P. ( B +P. C ) ) = ( B +P. ( u +P. C ) ) |
| 28 | 27 | oveq2i | |- ( z +P. ( u +P. ( B +P. C ) ) ) = ( z +P. ( B +P. ( u +P. C ) ) ) |
| 29 | addasspr | |- ( ( z +P. u ) +P. ( B +P. C ) ) = ( z +P. ( u +P. ( B +P. C ) ) ) |
|
| 30 | addasspr | |- ( ( z +P. B ) +P. ( u +P. C ) ) = ( z +P. ( B +P. ( u +P. C ) ) ) |
|
| 31 | 28 29 30 | 3eqtr4i | |- ( ( z +P. u ) +P. ( B +P. C ) ) = ( ( z +P. B ) +P. ( u +P. C ) ) |
| 32 | addcompr | |- ( v +P. A ) = ( A +P. v ) |
|
| 33 | 32 | oveq1i | |- ( ( v +P. A ) +P. D ) = ( ( A +P. v ) +P. D ) |
| 34 | addasspr | |- ( ( v +P. A ) +P. D ) = ( v +P. ( A +P. D ) ) |
|
| 35 | addasspr | |- ( ( A +P. v ) +P. D ) = ( A +P. ( v +P. D ) ) |
|
| 36 | 33 34 35 | 3eqtr3i | |- ( v +P. ( A +P. D ) ) = ( A +P. ( v +P. D ) ) |
| 37 | 36 | oveq2i | |- ( w +P. ( v +P. ( A +P. D ) ) ) = ( w +P. ( A +P. ( v +P. D ) ) ) |
| 38 | addasspr | |- ( ( w +P. v ) +P. ( A +P. D ) ) = ( w +P. ( v +P. ( A +P. D ) ) ) |
|
| 39 | addasspr | |- ( ( w +P. A ) +P. ( v +P. D ) ) = ( w +P. ( A +P. ( v +P. D ) ) ) |
|
| 40 | 37 38 39 | 3eqtr4i | |- ( ( w +P. v ) +P. ( A +P. D ) ) = ( ( w +P. A ) +P. ( v +P. D ) ) |
| 41 | 22 31 40 | 3eqtr4g | |- ( ( ( z +P. B ) = ( w +P. A ) /\ ( u +P. C ) = ( v +P. D ) ) -> ( ( z +P. u ) +P. ( B +P. C ) ) = ( ( w +P. v ) +P. ( A +P. D ) ) ) |
| 42 | 21 41 | biimtrdi | |- ( ( ( ( z e. P. /\ w e. P. ) /\ ( A e. P. /\ B e. P. ) ) /\ ( ( v e. P. /\ u e. P. ) /\ ( C e. P. /\ D e. P. ) ) ) -> ( ( [ <. z , w >. ] ~R = [ <. A , B >. ] ~R /\ [ <. v , u >. ] ~R = [ <. C , D >. ] ~R ) -> ( ( z +P. u ) +P. ( B +P. C ) ) = ( ( w +P. v ) +P. ( A +P. D ) ) ) ) |
| 43 | ovex | |- ( z +P. u ) e. _V |
|
| 44 | ovex | |- ( B +P. C ) e. _V |
|
| 45 | ltapr | |- ( f e. P. -> ( x |
|
| 46 | ovex | |- ( w +P. v ) e. _V |
|
| 47 | addcompr | |- ( x +P. y ) = ( y +P. x ) |
|
| 48 | ovex | |- ( A +P. D ) e. _V |
|
| 49 | 43 44 45 46 47 48 | caovord3 | |- ( ( ( ( B +P. C ) e. P. /\ ( w +P. v ) e. P. ) /\ ( ( z +P. u ) +P. ( B +P. C ) ) = ( ( w +P. v ) +P. ( A +P. D ) ) ) -> ( ( z +P. u ) |
| 50 | 16 42 49 | syl6an | |- ( ( ( ( z e. P. /\ w e. P. ) /\ ( A e. P. /\ B e. P. ) ) /\ ( ( v e. P. /\ u e. P. ) /\ ( C e. P. /\ D e. P. ) ) ) -> ( ( [ <. z , w >. ] ~R = [ <. A , B >. ] ~R /\ [ <. v , u >. ] ~R = [ <. C , D >. ] ~R ) -> ( ( z +P. u ) |
| 51 | 9 1 4 10 50 | brecop | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( [ <. A , B >. ] ~R |
| 52 | 3 4 5 6 7 8 51 | brecop2 | |- ( [ <. A , B >. ] ~R |