This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lebnum . By the previous lemmas, F is continuous and positive on a compact set, so it has a positive minimum r . Then setting d = r / # ( U ) , since for each u e. U we have ball ( x , d ) C_ u iff d <_ d ( x , X \ u ) , if -. ball ( x , d ) C_ u for all u then summing over u yields sum_ u e. U d ( x , X \ u ) = F ( x ) < sum_ u e. U d = r , in contradiction to the assumption that r is the minimum of F . (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015) (Revised by AV, 30-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lebnum.j | |- J = ( MetOpen ` D ) |
|
| lebnum.d | |- ( ph -> D e. ( Met ` X ) ) |
||
| lebnum.c | |- ( ph -> J e. Comp ) |
||
| lebnum.s | |- ( ph -> U C_ J ) |
||
| lebnum.u | |- ( ph -> X = U. U ) |
||
| lebnumlem1.u | |- ( ph -> U e. Fin ) |
||
| lebnumlem1.n | |- ( ph -> -. X e. U ) |
||
| lebnumlem1.f | |- F = ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
||
| lebnumlem2.k | |- K = ( topGen ` ran (,) ) |
||
| Assertion | lebnumlem3 | |- ( ph -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lebnum.j | |- J = ( MetOpen ` D ) |
|
| 2 | lebnum.d | |- ( ph -> D e. ( Met ` X ) ) |
|
| 3 | lebnum.c | |- ( ph -> J e. Comp ) |
|
| 4 | lebnum.s | |- ( ph -> U C_ J ) |
|
| 5 | lebnum.u | |- ( ph -> X = U. U ) |
|
| 6 | lebnumlem1.u | |- ( ph -> U e. Fin ) |
|
| 7 | lebnumlem1.n | |- ( ph -> -. X e. U ) |
|
| 8 | lebnumlem1.f | |- F = ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
|
| 9 | lebnumlem2.k | |- K = ( topGen ` ran (,) ) |
|
| 10 | 1rp | |- 1 e. RR+ |
|
| 11 | 10 | ne0ii | |- RR+ =/= (/) |
| 12 | ral0 | |- A. x e. (/) E. u e. U ( x ( ball ` D ) d ) C_ u |
|
| 13 | simpr | |- ( ( ph /\ X = (/) ) -> X = (/) ) |
|
| 14 | 13 | raleqdv | |- ( ( ph /\ X = (/) ) -> ( A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u <-> A. x e. (/) E. u e. U ( x ( ball ` D ) d ) C_ u ) ) |
| 15 | 12 14 | mpbiri | |- ( ( ph /\ X = (/) ) -> A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| 16 | 15 | ralrimivw | |- ( ( ph /\ X = (/) ) -> A. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| 17 | r19.2z | |- ( ( RR+ =/= (/) /\ A. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
|
| 18 | 11 16 17 | sylancr | |- ( ( ph /\ X = (/) ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| 19 | 1 2 3 4 5 6 7 8 | lebnumlem1 | |- ( ph -> F : X --> RR+ ) |
| 20 | 19 | adantr | |- ( ( ph /\ X =/= (/) ) -> F : X --> RR+ ) |
| 21 | 20 | frnd | |- ( ( ph /\ X =/= (/) ) -> ran F C_ RR+ ) |
| 22 | eqid | |- U. J = U. J |
|
| 23 | 3 | adantr | |- ( ( ph /\ X =/= (/) ) -> J e. Comp ) |
| 24 | 1 2 3 4 5 6 7 8 9 | lebnumlem2 | |- ( ph -> F e. ( J Cn K ) ) |
| 25 | 24 | adantr | |- ( ( ph /\ X =/= (/) ) -> F e. ( J Cn K ) ) |
| 26 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 27 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 28 | 2 26 27 | 3syl | |- ( ph -> X = U. J ) |
| 29 | 28 | neeq1d | |- ( ph -> ( X =/= (/) <-> U. J =/= (/) ) ) |
| 30 | 29 | biimpa | |- ( ( ph /\ X =/= (/) ) -> U. J =/= (/) ) |
| 31 | 22 9 23 25 30 | evth2 | |- ( ( ph /\ X =/= (/) ) -> E. w e. U. J A. x e. U. J ( F ` w ) <_ ( F ` x ) ) |
| 32 | 28 | adantr | |- ( ( ph /\ X =/= (/) ) -> X = U. J ) |
| 33 | raleq | |- ( X = U. J -> ( A. x e. X ( F ` w ) <_ ( F ` x ) <-> A. x e. U. J ( F ` w ) <_ ( F ` x ) ) ) |
|
| 34 | 33 | rexeqbi1dv | |- ( X = U. J -> ( E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) <-> E. w e. U. J A. x e. U. J ( F ` w ) <_ ( F ` x ) ) ) |
| 35 | 32 34 | syl | |- ( ( ph /\ X =/= (/) ) -> ( E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) <-> E. w e. U. J A. x e. U. J ( F ` w ) <_ ( F ` x ) ) ) |
| 36 | 31 35 | mpbird | |- ( ( ph /\ X =/= (/) ) -> E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) ) |
| 37 | ffn | |- ( F : X --> RR+ -> F Fn X ) |
|
| 38 | breq1 | |- ( r = ( F ` w ) -> ( r <_ ( F ` x ) <-> ( F ` w ) <_ ( F ` x ) ) ) |
|
| 39 | 38 | ralbidv | |- ( r = ( F ` w ) -> ( A. x e. X r <_ ( F ` x ) <-> A. x e. X ( F ` w ) <_ ( F ` x ) ) ) |
| 40 | 39 | rexrn | |- ( F Fn X -> ( E. r e. ran F A. x e. X r <_ ( F ` x ) <-> E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) ) ) |
| 41 | 20 37 40 | 3syl | |- ( ( ph /\ X =/= (/) ) -> ( E. r e. ran F A. x e. X r <_ ( F ` x ) <-> E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) ) ) |
| 42 | 36 41 | mpbird | |- ( ( ph /\ X =/= (/) ) -> E. r e. ran F A. x e. X r <_ ( F ` x ) ) |
| 43 | ssrexv | |- ( ran F C_ RR+ -> ( E. r e. ran F A. x e. X r <_ ( F ` x ) -> E. r e. RR+ A. x e. X r <_ ( F ` x ) ) ) |
|
| 44 | 21 42 43 | sylc | |- ( ( ph /\ X =/= (/) ) -> E. r e. RR+ A. x e. X r <_ ( F ` x ) ) |
| 45 | simpr | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> r e. RR+ ) |
|
| 46 | 5 | ad2antrr | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> X = U. U ) |
| 47 | simplr | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> X =/= (/) ) |
|
| 48 | 46 47 | eqnetrrd | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> U. U =/= (/) ) |
| 49 | unieq | |- ( U = (/) -> U. U = U. (/) ) |
|
| 50 | uni0 | |- U. (/) = (/) |
|
| 51 | 49 50 | eqtrdi | |- ( U = (/) -> U. U = (/) ) |
| 52 | 51 | necon3i | |- ( U. U =/= (/) -> U =/= (/) ) |
| 53 | 48 52 | syl | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> U =/= (/) ) |
| 54 | 6 | ad2antrr | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> U e. Fin ) |
| 55 | hashnncl | |- ( U e. Fin -> ( ( # ` U ) e. NN <-> U =/= (/) ) ) |
|
| 56 | 54 55 | syl | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( ( # ` U ) e. NN <-> U =/= (/) ) ) |
| 57 | 53 56 | mpbird | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( # ` U ) e. NN ) |
| 58 | 57 | nnrpd | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( # ` U ) e. RR+ ) |
| 59 | 45 58 | rpdivcld | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( r / ( # ` U ) ) e. RR+ ) |
| 60 | ralnex | |- ( A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u <-> -. E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) |
|
| 61 | 54 | adantr | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> U e. Fin ) |
| 62 | 53 | adantr | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> U =/= (/) ) |
| 63 | simprl | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> x e. X ) |
|
| 64 | 63 | adantr | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> x e. X ) |
| 65 | eqid | |- ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) = ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
|
| 66 | 65 | metdsval | |- ( x e. X -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) = inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 67 | 64 66 | syl | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) = inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 68 | 2 | ad2antrr | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> D e. ( Met ` X ) ) |
| 69 | 68 | ad2antrr | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> D e. ( Met ` X ) ) |
| 70 | difssd | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( X \ k ) C_ X ) |
|
| 71 | elssuni | |- ( k e. U -> k C_ U. U ) |
|
| 72 | 71 | adantl | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> k C_ U. U ) |
| 73 | 46 | ad2antrr | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> X = U. U ) |
| 74 | 72 73 | sseqtrrd | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> k C_ X ) |
| 75 | eleq1 | |- ( k = X -> ( k e. U <-> X e. U ) ) |
|
| 76 | 75 | notbid | |- ( k = X -> ( -. k e. U <-> -. X e. U ) ) |
| 77 | 7 76 | syl5ibrcom | |- ( ph -> ( k = X -> -. k e. U ) ) |
| 78 | 77 | necon2ad | |- ( ph -> ( k e. U -> k =/= X ) ) |
| 79 | 78 | ad3antrrr | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( k e. U -> k =/= X ) ) |
| 80 | 79 | imp | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> k =/= X ) |
| 81 | pssdifn0 | |- ( ( k C_ X /\ k =/= X ) -> ( X \ k ) =/= (/) ) |
|
| 82 | 74 80 81 | syl2anc | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( X \ k ) =/= (/) ) |
| 83 | 65 | metdsre | |- ( ( D e. ( Met ` X ) /\ ( X \ k ) C_ X /\ ( X \ k ) =/= (/) ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> RR ) |
| 84 | 69 70 82 83 | syl3anc | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> RR ) |
| 85 | 84 64 | ffvelcdmd | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) e. RR ) |
| 86 | 67 85 | eqeltrrd | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) e. RR ) |
| 87 | 59 | ad2antrr | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( r / ( # ` U ) ) e. RR+ ) |
| 88 | 87 | rpred | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( r / ( # ` U ) ) e. RR ) |
| 89 | simprr | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) |
|
| 90 | sseq2 | |- ( u = k -> ( ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u <-> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) |
|
| 91 | 90 | notbid | |- ( u = k -> ( -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u <-> -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) |
| 92 | 91 | rspccva | |- ( ( A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u /\ k e. U ) -> -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) |
| 93 | 89 92 | sylan | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) |
| 94 | 69 26 | syl | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> D e. ( *Met ` X ) ) |
| 95 | 87 | rpxrd | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( r / ( # ` U ) ) e. RR* ) |
| 96 | 65 | metdsge | |- ( ( ( D e. ( *Met ` X ) /\ ( X \ k ) C_ X /\ x e. X ) /\ ( r / ( # ` U ) ) e. RR* ) -> ( ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) <-> ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) ) ) |
| 97 | 94 70 64 95 96 | syl31anc | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) <-> ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) ) ) |
| 98 | blssm | |- ( ( D e. ( *Met ` X ) /\ x e. X /\ ( r / ( # ` U ) ) e. RR* ) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ X ) |
|
| 99 | 94 64 95 98 | syl3anc | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ X ) |
| 100 | difin0ss | |- ( ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) -> ( ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ X -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) |
|
| 101 | 99 100 | syl5com | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) |
| 102 | 97 101 | sylbid | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) |
| 103 | 93 102 | mtod | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> -. ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) ) |
| 104 | 85 88 | ltnled | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) < ( r / ( # ` U ) ) <-> -. ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) ) ) |
| 105 | 103 104 | mpbird | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) < ( r / ( # ` U ) ) ) |
| 106 | 67 105 | eqbrtrrd | |- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) < ( r / ( # ` U ) ) ) |
| 107 | 61 62 86 88 106 | fsumlt | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) < sum_ k e. U ( r / ( # ` U ) ) ) |
| 108 | oveq1 | |- ( y = x -> ( y D z ) = ( x D z ) ) |
|
| 109 | 108 | mpteq2dv | |- ( y = x -> ( z e. ( X \ k ) |-> ( y D z ) ) = ( z e. ( X \ k ) |-> ( x D z ) ) ) |
| 110 | 109 | rneqd | |- ( y = x -> ran ( z e. ( X \ k ) |-> ( y D z ) ) = ran ( z e. ( X \ k ) |-> ( x D z ) ) ) |
| 111 | 110 | infeq1d | |- ( y = x -> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) = inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 112 | 111 | sumeq2sdv | |- ( y = x -> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) = sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 113 | sumex | |- sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) e. _V |
|
| 114 | 112 8 113 | fvmpt | |- ( x e. X -> ( F ` x ) = sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 115 | 63 114 | syl | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) = sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 116 | 59 | adantr | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( r / ( # ` U ) ) e. RR+ ) |
| 117 | 116 | rpcnd | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( r / ( # ` U ) ) e. CC ) |
| 118 | fsumconst | |- ( ( U e. Fin /\ ( r / ( # ` U ) ) e. CC ) -> sum_ k e. U ( r / ( # ` U ) ) = ( ( # ` U ) x. ( r / ( # ` U ) ) ) ) |
|
| 119 | 61 117 118 | syl2anc | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> sum_ k e. U ( r / ( # ` U ) ) = ( ( # ` U ) x. ( r / ( # ` U ) ) ) ) |
| 120 | simplr | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r e. RR+ ) |
|
| 121 | 120 | rpcnd | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r e. CC ) |
| 122 | 57 | adantr | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( # ` U ) e. NN ) |
| 123 | 122 | nncnd | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( # ` U ) e. CC ) |
| 124 | 122 | nnne0d | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( # ` U ) =/= 0 ) |
| 125 | 121 123 124 | divcan2d | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( ( # ` U ) x. ( r / ( # ` U ) ) ) = r ) |
| 126 | 119 125 | eqtr2d | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r = sum_ k e. U ( r / ( # ` U ) ) ) |
| 127 | 107 115 126 | 3brtr4d | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) < r ) |
| 128 | 20 | ad2antrr | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> F : X --> RR+ ) |
| 129 | 128 63 | ffvelcdmd | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) e. RR+ ) |
| 130 | 129 | rpred | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) e. RR ) |
| 131 | 120 | rpred | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r e. RR ) |
| 132 | 130 131 | ltnled | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( ( F ` x ) < r <-> -. r <_ ( F ` x ) ) ) |
| 133 | 127 132 | mpbid | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> -. r <_ ( F ` x ) ) |
| 134 | 133 | expr | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ x e. X ) -> ( A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u -> -. r <_ ( F ` x ) ) ) |
| 135 | 60 134 | biimtrrid | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ x e. X ) -> ( -. E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u -> -. r <_ ( F ` x ) ) ) |
| 136 | 135 | con4d | |- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ x e. X ) -> ( r <_ ( F ` x ) -> E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) |
| 137 | 136 | ralimdva | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( A. x e. X r <_ ( F ` x ) -> A. x e. X E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) |
| 138 | oveq2 | |- ( d = ( r / ( # ` U ) ) -> ( x ( ball ` D ) d ) = ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) |
|
| 139 | 138 | sseq1d | |- ( d = ( r / ( # ` U ) ) -> ( ( x ( ball ` D ) d ) C_ u <-> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) |
| 140 | 139 | rexbidv | |- ( d = ( r / ( # ` U ) ) -> ( E. u e. U ( x ( ball ` D ) d ) C_ u <-> E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) |
| 141 | 140 | ralbidv | |- ( d = ( r / ( # ` U ) ) -> ( A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u <-> A. x e. X E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) |
| 142 | 141 | rspcev | |- ( ( ( r / ( # ` U ) ) e. RR+ /\ A. x e. X E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| 143 | 59 137 142 | syl6an | |- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( A. x e. X r <_ ( F ` x ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) ) |
| 144 | 143 | rexlimdva | |- ( ( ph /\ X =/= (/) ) -> ( E. r e. RR+ A. x e. X r <_ ( F ` x ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) ) |
| 145 | 44 144 | mpd | |- ( ( ph /\ X =/= (/) ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| 146 | 18 145 | pm2.61dane | |- ( ph -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |