This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lebnum . By the previous lemmas, F is continuous and positive on a compact set, so it has a positive minimum r . Then setting d = r / # ( U ) , since for each u e. U we have ball ( x , d ) C_ u iff d <_ d ( x , X \ u ) , if -. ball ( x , d ) C_ u for all u then summing over u yields sum_ u e. U d ( x , X \ u ) = F ( x ) < sum_ u e. U d = r , in contradiction to the assumption that r is the minimum of F . (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015) (Revised by AV, 30-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lebnum.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| lebnum.d | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| lebnum.c | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| lebnum.s | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | ||
| lebnum.u | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | ||
| lebnumlem1.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | ||
| lebnumlem1.n | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) | ||
| lebnumlem1.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) | ||
| lebnumlem2.k | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| Assertion | lebnumlem3 | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lebnum.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | lebnum.d | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | lebnum.c | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 4 | lebnum.s | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | |
| 5 | lebnum.u | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | |
| 6 | lebnumlem1.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | |
| 7 | lebnumlem1.n | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) | |
| 8 | lebnumlem1.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) | |
| 9 | lebnumlem2.k | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 10 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 11 | 10 | ne0ii | ⊢ ℝ+ ≠ ∅ |
| 12 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 | |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑋 = ∅ ) | |
| 14 | 13 | raleqdv | ⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∀ 𝑥 ∈ ∅ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 15 | 12 14 | mpbiri | ⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 16 | 15 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∀ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 17 | r19.2z | ⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) | |
| 18 | 11 16 17 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 19 | 1 2 3 4 5 6 7 8 | lebnumlem1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ+ ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝐹 : 𝑋 ⟶ ℝ+ ) |
| 21 | 20 | frnd | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ran 𝐹 ⊆ ℝ+ ) |
| 22 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 23 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝐽 ∈ Comp ) |
| 24 | 1 2 3 4 5 6 7 8 9 | lebnumlem2 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 26 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 27 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 28 | 2 26 27 | 3syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 29 | 28 | neeq1d | ⊢ ( 𝜑 → ( 𝑋 ≠ ∅ ↔ ∪ 𝐽 ≠ ∅ ) ) |
| 30 | 29 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∪ 𝐽 ≠ ∅ ) |
| 31 | 22 9 23 25 30 | evth2 | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑤 ∈ ∪ 𝐽 ∀ 𝑥 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 32 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝑋 = ∪ 𝐽 ) |
| 33 | raleq | ⊢ ( 𝑋 = ∪ 𝐽 → ( ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 34 | 33 | rexeqbi1dv | ⊢ ( 𝑋 = ∪ 𝐽 → ( ∃ 𝑤 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑤 ∈ ∪ 𝐽 ∀ 𝑥 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 35 | 32 34 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑤 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑤 ∈ ∪ 𝐽 ∀ 𝑥 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 | 31 35 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 37 | ffn | ⊢ ( 𝐹 : 𝑋 ⟶ ℝ+ → 𝐹 Fn 𝑋 ) | |
| 38 | breq1 | ⊢ ( 𝑟 = ( 𝐹 ‘ 𝑤 ) → ( 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 39 | 38 | ralbidv | ⊢ ( 𝑟 = ( 𝐹 ‘ 𝑤 ) → ( ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 40 | 39 | rexrn | ⊢ ( 𝐹 Fn 𝑋 → ( ∃ 𝑟 ∈ ran 𝐹 ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑤 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 41 | 20 37 40 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑟 ∈ ran 𝐹 ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑤 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 42 | 36 41 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑟 ∈ ran 𝐹 ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 43 | ssrexv | ⊢ ( ran 𝐹 ⊆ ℝ+ → ( ∃ 𝑟 ∈ ran 𝐹 ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) → ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 44 | 21 42 43 | sylc | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 45 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) | |
| 46 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑋 = ∪ 𝑈 ) |
| 47 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑋 ≠ ∅ ) | |
| 48 | 46 47 | eqnetrrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ∪ 𝑈 ≠ ∅ ) |
| 49 | unieq | ⊢ ( 𝑈 = ∅ → ∪ 𝑈 = ∪ ∅ ) | |
| 50 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 51 | 49 50 | eqtrdi | ⊢ ( 𝑈 = ∅ → ∪ 𝑈 = ∅ ) |
| 52 | 51 | necon3i | ⊢ ( ∪ 𝑈 ≠ ∅ → 𝑈 ≠ ∅ ) |
| 53 | 48 52 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑈 ≠ ∅ ) |
| 54 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑈 ∈ Fin ) |
| 55 | hashnncl | ⊢ ( 𝑈 ∈ Fin → ( ( ♯ ‘ 𝑈 ) ∈ ℕ ↔ 𝑈 ≠ ∅ ) ) | |
| 56 | 54 55 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( ( ♯ ‘ 𝑈 ) ∈ ℕ ↔ 𝑈 ≠ ∅ ) ) |
| 57 | 53 56 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( ♯ ‘ 𝑈 ) ∈ ℕ ) |
| 58 | 57 | nnrpd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( ♯ ‘ 𝑈 ) ∈ ℝ+ ) |
| 59 | 45 58 | rpdivcld | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ+ ) |
| 60 | ralnex | ⊢ ( ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ↔ ¬ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) | |
| 61 | 54 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑈 ∈ Fin ) |
| 62 | 53 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑈 ≠ ∅ ) |
| 63 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑥 ∈ 𝑋 ) | |
| 64 | 63 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝑥 ∈ 𝑋 ) |
| 65 | eqid | ⊢ ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) | |
| 66 | 65 | metdsval | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 67 | 64 66 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 68 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 69 | 68 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 70 | difssd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ) | |
| 71 | elssuni | ⊢ ( 𝑘 ∈ 𝑈 → 𝑘 ⊆ ∪ 𝑈 ) | |
| 72 | 71 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ⊆ ∪ 𝑈 ) |
| 73 | 46 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝑋 = ∪ 𝑈 ) |
| 74 | 72 73 | sseqtrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ⊆ 𝑋 ) |
| 75 | eleq1 | ⊢ ( 𝑘 = 𝑋 → ( 𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) | |
| 76 | 75 | notbid | ⊢ ( 𝑘 = 𝑋 → ( ¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈 ) ) |
| 77 | 7 76 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈 ) ) |
| 78 | 77 | necon2ad | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋 ) ) |
| 79 | 78 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋 ) ) |
| 80 | 79 | imp | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ≠ 𝑋 ) |
| 81 | pssdifn0 | ⊢ ( ( 𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) | |
| 82 | 74 80 81 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) |
| 83 | 65 | metdsre | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 84 | 69 70 82 83 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 85 | 84 64 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 86 | 67 85 | eqeltrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 87 | 59 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ+ ) |
| 88 | 87 | rpred | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ ) |
| 89 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) | |
| 90 | sseq2 | ⊢ ( 𝑢 = 𝑘 → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ↔ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) ) | |
| 91 | 90 | notbid | ⊢ ( 𝑢 = 𝑘 → ( ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ↔ ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) ) |
| 92 | 91 | rspccva | ⊢ ( ( ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ∧ 𝑘 ∈ 𝑈 ) → ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) |
| 93 | 89 92 | sylan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) |
| 94 | 69 26 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 95 | 87 | rpxrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ* ) |
| 96 | 65 | metdsge | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ* ) → ( ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ≤ ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) ↔ ( ( 𝑋 ∖ 𝑘 ) ∩ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) = ∅ ) ) |
| 97 | 94 70 64 95 96 | syl31anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ≤ ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) ↔ ( ( 𝑋 ∖ 𝑘 ) ∩ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) = ∅ ) ) |
| 98 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑋 ) | |
| 99 | 94 64 95 98 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑋 ) |
| 100 | difin0ss | ⊢ ( ( ( 𝑋 ∖ 𝑘 ) ∩ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) = ∅ → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑋 → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) ) | |
| 101 | 99 100 | syl5com | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( ( 𝑋 ∖ 𝑘 ) ∩ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) = ∅ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) ) |
| 102 | 97 101 | sylbid | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ≤ ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) ) |
| 103 | 93 102 | mtod | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ¬ ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ≤ ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) ) |
| 104 | 85 88 | ltnled | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) < ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ↔ ¬ ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ≤ ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) ) ) |
| 105 | 103 104 | mpbird | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) < ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) |
| 106 | 67 105 | eqbrtrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) < ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) |
| 107 | 61 62 86 88 106 | fsumlt | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) < Σ 𝑘 ∈ 𝑈 ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) |
| 108 | oveq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝐷 𝑧 ) = ( 𝑥 𝐷 𝑧 ) ) | |
| 109 | 108 | mpteq2dv | ⊢ ( 𝑦 = 𝑥 → ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) = ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) ) |
| 110 | 109 | rneqd | ⊢ ( 𝑦 = 𝑥 → ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) = ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) ) |
| 111 | 110 | infeq1d | ⊢ ( 𝑦 = 𝑥 → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 112 | 111 | sumeq2sdv | ⊢ ( 𝑦 = 𝑥 → Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) = Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 113 | sumex | ⊢ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ∈ V | |
| 114 | 112 8 113 | fvmpt | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝐹 ‘ 𝑥 ) = Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 115 | 63 114 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ 𝑥 ) = Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 116 | 59 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ+ ) |
| 117 | 116 | rpcnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℂ ) |
| 118 | fsumconst | ⊢ ( ( 𝑈 ∈ Fin ∧ ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℂ ) → Σ 𝑘 ∈ 𝑈 ( 𝑟 / ( ♯ ‘ 𝑈 ) ) = ( ( ♯ ‘ 𝑈 ) · ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) | |
| 119 | 61 117 118 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → Σ 𝑘 ∈ 𝑈 ( 𝑟 / ( ♯ ‘ 𝑈 ) ) = ( ( ♯ ‘ 𝑈 ) · ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) |
| 120 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℝ+ ) | |
| 121 | 120 | rpcnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℂ ) |
| 122 | 57 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( ♯ ‘ 𝑈 ) ∈ ℕ ) |
| 123 | 122 | nncnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( ♯ ‘ 𝑈 ) ∈ ℂ ) |
| 124 | 122 | nnne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( ♯ ‘ 𝑈 ) ≠ 0 ) |
| 125 | 121 123 124 | divcan2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( ( ♯ ‘ 𝑈 ) · ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) = 𝑟 ) |
| 126 | 119 125 | eqtr2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑟 = Σ 𝑘 ∈ 𝑈 ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) |
| 127 | 107 115 126 | 3brtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ 𝑥 ) < 𝑟 ) |
| 128 | 20 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝐹 : 𝑋 ⟶ ℝ+ ) |
| 129 | 128 63 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ+ ) |
| 130 | 129 | rpred | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 131 | 120 | rpred | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℝ ) |
| 132 | 130 131 | ltnled | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( ( 𝐹 ‘ 𝑥 ) < 𝑟 ↔ ¬ 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 133 | 127 132 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ¬ 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 134 | 133 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 → ¬ 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 135 | 60 134 | biimtrrid | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ¬ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 → ¬ 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 136 | 135 | con4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) |
| 137 | 136 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) |
| 138 | oveq2 | ⊢ ( 𝑑 = ( 𝑟 / ( ♯ ‘ 𝑈 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) = ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) | |
| 139 | 138 | sseq1d | ⊢ ( 𝑑 = ( 𝑟 / ( ♯ ‘ 𝑈 ) ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) |
| 140 | 139 | rexbidv | ⊢ ( 𝑑 = ( 𝑟 / ( ♯ ‘ 𝑈 ) ) → ( ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) |
| 141 | 140 | ralbidv | ⊢ ( 𝑑 = ( 𝑟 / ( ♯ ‘ 𝑈 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) |
| 142 | 141 | rspcev | ⊢ ( ( ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 143 | 59 137 142 | syl6an | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 144 | 143 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 145 | 44 144 | mpd | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 146 | 18 145 | pm2.61dane | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |