This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bndth.1 | |- X = U. J |
|
| bndth.2 | |- K = ( topGen ` ran (,) ) |
||
| bndth.3 | |- ( ph -> J e. Comp ) |
||
| bndth.4 | |- ( ph -> F e. ( J Cn K ) ) |
||
| evth.5 | |- ( ph -> X =/= (/) ) |
||
| Assertion | evth2 | |- ( ph -> E. x e. X A. y e. X ( F ` x ) <_ ( F ` y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bndth.1 | |- X = U. J |
|
| 2 | bndth.2 | |- K = ( topGen ` ran (,) ) |
|
| 3 | bndth.3 | |- ( ph -> J e. Comp ) |
|
| 4 | bndth.4 | |- ( ph -> F e. ( J Cn K ) ) |
|
| 5 | evth.5 | |- ( ph -> X =/= (/) ) |
|
| 6 | cmptop | |- ( J e. Comp -> J e. Top ) |
|
| 7 | 3 6 | syl | |- ( ph -> J e. Top ) |
| 8 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 9 | 7 8 | sylib | |- ( ph -> J e. ( TopOn ` X ) ) |
| 10 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 11 | 2 | unieqi | |- U. K = U. ( topGen ` ran (,) ) |
| 12 | 10 11 | eqtr4i | |- RR = U. K |
| 13 | 1 12 | cnf | |- ( F e. ( J Cn K ) -> F : X --> RR ) |
| 14 | 4 13 | syl | |- ( ph -> F : X --> RR ) |
| 15 | 14 | feqmptd | |- ( ph -> F = ( z e. X |-> ( F ` z ) ) ) |
| 16 | 15 4 | eqeltrrd | |- ( ph -> ( z e. X |-> ( F ` z ) ) e. ( J Cn K ) ) |
| 17 | retopon | |- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
|
| 18 | 2 17 | eqeltri | |- K e. ( TopOn ` RR ) |
| 19 | 18 | a1i | |- ( ph -> K e. ( TopOn ` RR ) ) |
| 20 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 21 | 20 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 22 | 21 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 23 | 0cnd | |- ( ph -> 0 e. CC ) |
|
| 24 | 19 22 23 | cnmptc | |- ( ph -> ( y e. RR |-> 0 ) e. ( K Cn ( TopOpen ` CCfld ) ) ) |
| 25 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 26 | 2 25 | eqtri | |- K = ( ( TopOpen ` CCfld ) |`t RR ) |
| 27 | ax-resscn | |- RR C_ CC |
|
| 28 | 27 | a1i | |- ( ph -> RR C_ CC ) |
| 29 | 22 | cnmptid | |- ( ph -> ( y e. CC |-> y ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 30 | 26 22 28 29 | cnmpt1res | |- ( ph -> ( y e. RR |-> y ) e. ( K Cn ( TopOpen ` CCfld ) ) ) |
| 31 | 20 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 32 | 31 | a1i | |- ( ph -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 33 | 19 24 30 32 | cnmpt12f | |- ( ph -> ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( TopOpen ` CCfld ) ) ) |
| 34 | df-neg | |- -u y = ( 0 - y ) |
|
| 35 | renegcl | |- ( y e. RR -> -u y e. RR ) |
|
| 36 | 34 35 | eqeltrrid | |- ( y e. RR -> ( 0 - y ) e. RR ) |
| 37 | 36 | adantl | |- ( ( ph /\ y e. RR ) -> ( 0 - y ) e. RR ) |
| 38 | 37 | fmpttd | |- ( ph -> ( y e. RR |-> ( 0 - y ) ) : RR --> RR ) |
| 39 | 38 | frnd | |- ( ph -> ran ( y e. RR |-> ( 0 - y ) ) C_ RR ) |
| 40 | cnrest2 | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( y e. RR |-> ( 0 - y ) ) C_ RR /\ RR C_ CC ) -> ( ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( TopOpen ` CCfld ) ) <-> ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
|
| 41 | 22 39 28 40 | syl3anc | |- ( ph -> ( ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( TopOpen ` CCfld ) ) <-> ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
| 42 | 33 41 | mpbid | |- ( ph -> ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 43 | 26 | oveq2i | |- ( K Cn K ) = ( K Cn ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 44 | 42 43 | eleqtrrdi | |- ( ph -> ( y e. RR |-> ( 0 - y ) ) e. ( K Cn K ) ) |
| 45 | negeq | |- ( y = ( F ` z ) -> -u y = -u ( F ` z ) ) |
|
| 46 | 34 45 | eqtr3id | |- ( y = ( F ` z ) -> ( 0 - y ) = -u ( F ` z ) ) |
| 47 | 9 16 19 44 46 | cnmpt11 | |- ( ph -> ( z e. X |-> -u ( F ` z ) ) e. ( J Cn K ) ) |
| 48 | 1 2 3 47 5 | evth | |- ( ph -> E. x e. X A. y e. X ( ( z e. X |-> -u ( F ` z ) ) ` y ) <_ ( ( z e. X |-> -u ( F ` z ) ) ` x ) ) |
| 49 | fveq2 | |- ( z = y -> ( F ` z ) = ( F ` y ) ) |
|
| 50 | 49 | negeqd | |- ( z = y -> -u ( F ` z ) = -u ( F ` y ) ) |
| 51 | eqid | |- ( z e. X |-> -u ( F ` z ) ) = ( z e. X |-> -u ( F ` z ) ) |
|
| 52 | negex | |- -u ( F ` y ) e. _V |
|
| 53 | 50 51 52 | fvmpt | |- ( y e. X -> ( ( z e. X |-> -u ( F ` z ) ) ` y ) = -u ( F ` y ) ) |
| 54 | 53 | adantl | |- ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( ( z e. X |-> -u ( F ` z ) ) ` y ) = -u ( F ` y ) ) |
| 55 | fveq2 | |- ( z = x -> ( F ` z ) = ( F ` x ) ) |
|
| 56 | 55 | negeqd | |- ( z = x -> -u ( F ` z ) = -u ( F ` x ) ) |
| 57 | negex | |- -u ( F ` x ) e. _V |
|
| 58 | 56 51 57 | fvmpt | |- ( x e. X -> ( ( z e. X |-> -u ( F ` z ) ) ` x ) = -u ( F ` x ) ) |
| 59 | 58 | ad2antlr | |- ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( ( z e. X |-> -u ( F ` z ) ) ` x ) = -u ( F ` x ) ) |
| 60 | 54 59 | breq12d | |- ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( ( ( z e. X |-> -u ( F ` z ) ) ` y ) <_ ( ( z e. X |-> -u ( F ` z ) ) ` x ) <-> -u ( F ` y ) <_ -u ( F ` x ) ) ) |
| 61 | 14 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( F ` x ) e. RR ) |
| 62 | 61 | adantr | |- ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( F ` x ) e. RR ) |
| 63 | 14 | ffvelcdmda | |- ( ( ph /\ y e. X ) -> ( F ` y ) e. RR ) |
| 64 | 63 | adantlr | |- ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( F ` y ) e. RR ) |
| 65 | 62 64 | lenegd | |- ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( ( F ` x ) <_ ( F ` y ) <-> -u ( F ` y ) <_ -u ( F ` x ) ) ) |
| 66 | 60 65 | bitr4d | |- ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( ( ( z e. X |-> -u ( F ` z ) ) ` y ) <_ ( ( z e. X |-> -u ( F ` z ) ) ` x ) <-> ( F ` x ) <_ ( F ` y ) ) ) |
| 67 | 66 | ralbidva | |- ( ( ph /\ x e. X ) -> ( A. y e. X ( ( z e. X |-> -u ( F ` z ) ) ` y ) <_ ( ( z e. X |-> -u ( F ` z ) ) ` x ) <-> A. y e. X ( F ` x ) <_ ( F ` y ) ) ) |
| 68 | 67 | rexbidva | |- ( ph -> ( E. x e. X A. y e. X ( ( z e. X |-> -u ( F ` z ) ) ` y ) <_ ( ( z e. X |-> -u ( F ` z ) ) ` x ) <-> E. x e. X A. y e. X ( F ` x ) <_ ( F ` y ) ) ) |
| 69 | 48 68 | mpbid | |- ( ph -> E. x e. X A. y e. X ( F ` x ) <_ ( F ` y ) ) |