This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance from the point A to the set S is greater than R iff the R -ball around A misses S . (Contributed by Mario Carneiro, 4-Sep-2015) (Proof shortened by AV, 30-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| Assertion | metdsge | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> ( R <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) R ) ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| 2 | simpl3 | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> A e. X ) |
|
| 3 | 1 | metdsval | |- ( A e. X -> ( F ` A ) = inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) ) |
| 4 | 2 3 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> ( F ` A ) = inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) ) |
| 5 | 4 | breq2d | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> ( R <_ ( F ` A ) <-> R <_ inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) ) ) |
| 6 | simpll1 | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) /\ w e. S ) -> D e. ( *Met ` X ) ) |
|
| 7 | 2 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) /\ w e. S ) -> A e. X ) |
| 8 | simpl2 | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> S C_ X ) |
|
| 9 | 8 | sselda | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) /\ w e. S ) -> w e. X ) |
| 10 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ w e. X ) -> ( A D w ) e. RR* ) |
|
| 11 | 6 7 9 10 | syl3anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) /\ w e. S ) -> ( A D w ) e. RR* ) |
| 12 | oveq2 | |- ( y = w -> ( A D y ) = ( A D w ) ) |
|
| 13 | 12 | cbvmptv | |- ( y e. S |-> ( A D y ) ) = ( w e. S |-> ( A D w ) ) |
| 14 | 11 13 | fmptd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> ( y e. S |-> ( A D y ) ) : S --> RR* ) |
| 15 | 14 | frnd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> ran ( y e. S |-> ( A D y ) ) C_ RR* ) |
| 16 | simpr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> R e. RR* ) |
|
| 17 | infxrgelb | |- ( ( ran ( y e. S |-> ( A D y ) ) C_ RR* /\ R e. RR* ) -> ( R <_ inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) <-> A. z e. ran ( y e. S |-> ( A D y ) ) R <_ z ) ) |
|
| 18 | 15 16 17 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> ( R <_ inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) <-> A. z e. ran ( y e. S |-> ( A D y ) ) R <_ z ) ) |
| 19 | 16 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) /\ w e. S ) -> R e. RR* ) |
| 20 | elbl2 | |- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( A e. X /\ w e. X ) ) -> ( w e. ( A ( ball ` D ) R ) <-> ( A D w ) < R ) ) |
|
| 21 | 6 19 7 9 20 | syl22anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) /\ w e. S ) -> ( w e. ( A ( ball ` D ) R ) <-> ( A D w ) < R ) ) |
| 22 | xrltnle | |- ( ( ( A D w ) e. RR* /\ R e. RR* ) -> ( ( A D w ) < R <-> -. R <_ ( A D w ) ) ) |
|
| 23 | 11 19 22 | syl2anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) /\ w e. S ) -> ( ( A D w ) < R <-> -. R <_ ( A D w ) ) ) |
| 24 | 21 23 | bitrd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) /\ w e. S ) -> ( w e. ( A ( ball ` D ) R ) <-> -. R <_ ( A D w ) ) ) |
| 25 | 24 | con2bid | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) /\ w e. S ) -> ( R <_ ( A D w ) <-> -. w e. ( A ( ball ` D ) R ) ) ) |
| 26 | 25 | ralbidva | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> ( A. w e. S R <_ ( A D w ) <-> A. w e. S -. w e. ( A ( ball ` D ) R ) ) ) |
| 27 | ovex | |- ( A D w ) e. _V |
|
| 28 | 27 | rgenw | |- A. w e. S ( A D w ) e. _V |
| 29 | breq2 | |- ( z = ( A D w ) -> ( R <_ z <-> R <_ ( A D w ) ) ) |
|
| 30 | 13 29 | ralrnmptw | |- ( A. w e. S ( A D w ) e. _V -> ( A. z e. ran ( y e. S |-> ( A D y ) ) R <_ z <-> A. w e. S R <_ ( A D w ) ) ) |
| 31 | 28 30 | ax-mp | |- ( A. z e. ran ( y e. S |-> ( A D y ) ) R <_ z <-> A. w e. S R <_ ( A D w ) ) |
| 32 | disj | |- ( ( S i^i ( A ( ball ` D ) R ) ) = (/) <-> A. w e. S -. w e. ( A ( ball ` D ) R ) ) |
|
| 33 | 26 31 32 | 3bitr4g | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> ( A. z e. ran ( y e. S |-> ( A D y ) ) R <_ z <-> ( S i^i ( A ( ball ` D ) R ) ) = (/) ) ) |
| 34 | 5 18 33 | 3bitrd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ R e. RR* ) -> ( R <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) R ) ) = (/) ) ) |