This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumlt.1 | |- ( ph -> A e. Fin ) |
|
| fsumlt.2 | |- ( ph -> A =/= (/) ) |
||
| fsumlt.3 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
| fsumlt.4 | |- ( ( ph /\ k e. A ) -> C e. RR ) |
||
| fsumlt.5 | |- ( ( ph /\ k e. A ) -> B < C ) |
||
| Assertion | fsumlt | |- ( ph -> sum_ k e. A B < sum_ k e. A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumlt.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumlt.2 | |- ( ph -> A =/= (/) ) |
|
| 3 | fsumlt.3 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
| 4 | fsumlt.4 | |- ( ( ph /\ k e. A ) -> C e. RR ) |
|
| 5 | fsumlt.5 | |- ( ( ph /\ k e. A ) -> B < C ) |
|
| 6 | difrp | |- ( ( B e. RR /\ C e. RR ) -> ( B < C <-> ( C - B ) e. RR+ ) ) |
|
| 7 | 3 4 6 | syl2anc | |- ( ( ph /\ k e. A ) -> ( B < C <-> ( C - B ) e. RR+ ) ) |
| 8 | 5 7 | mpbid | |- ( ( ph /\ k e. A ) -> ( C - B ) e. RR+ ) |
| 9 | 1 2 8 | fsumrpcl | |- ( ph -> sum_ k e. A ( C - B ) e. RR+ ) |
| 10 | 9 | rpgt0d | |- ( ph -> 0 < sum_ k e. A ( C - B ) ) |
| 11 | 4 | recnd | |- ( ( ph /\ k e. A ) -> C e. CC ) |
| 12 | 3 | recnd | |- ( ( ph /\ k e. A ) -> B e. CC ) |
| 13 | 1 11 12 | fsumsub | |- ( ph -> sum_ k e. A ( C - B ) = ( sum_ k e. A C - sum_ k e. A B ) ) |
| 14 | 10 13 | breqtrd | |- ( ph -> 0 < ( sum_ k e. A C - sum_ k e. A B ) ) |
| 15 | 1 3 | fsumrecl | |- ( ph -> sum_ k e. A B e. RR ) |
| 16 | 1 4 | fsumrecl | |- ( ph -> sum_ k e. A C e. RR ) |
| 17 | 15 16 | posdifd | |- ( ph -> ( sum_ k e. A B < sum_ k e. A C <-> 0 < ( sum_ k e. A C - sum_ k e. A B ) ) ) |
| 18 | 14 17 | mpbird | |- ( ph -> sum_ k e. A B < sum_ k e. A C ) |