This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lebnum . The function F measures the sum of all of the distances to escape the sets of the cover. Since by assumption it is a cover, there is at least one set which covers a given point, and since it is open, the point is a positive distance from the edge of the set. Thus, the sum is a strictly positive number. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by AV, 30-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lebnum.j | |- J = ( MetOpen ` D ) |
|
| lebnum.d | |- ( ph -> D e. ( Met ` X ) ) |
||
| lebnum.c | |- ( ph -> J e. Comp ) |
||
| lebnum.s | |- ( ph -> U C_ J ) |
||
| lebnum.u | |- ( ph -> X = U. U ) |
||
| lebnumlem1.u | |- ( ph -> U e. Fin ) |
||
| lebnumlem1.n | |- ( ph -> -. X e. U ) |
||
| lebnumlem1.f | |- F = ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
||
| Assertion | lebnumlem1 | |- ( ph -> F : X --> RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lebnum.j | |- J = ( MetOpen ` D ) |
|
| 2 | lebnum.d | |- ( ph -> D e. ( Met ` X ) ) |
|
| 3 | lebnum.c | |- ( ph -> J e. Comp ) |
|
| 4 | lebnum.s | |- ( ph -> U C_ J ) |
|
| 5 | lebnum.u | |- ( ph -> X = U. U ) |
|
| 6 | lebnumlem1.u | |- ( ph -> U e. Fin ) |
|
| 7 | lebnumlem1.n | |- ( ph -> -. X e. U ) |
|
| 8 | lebnumlem1.f | |- F = ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
|
| 9 | 6 | adantr | |- ( ( ph /\ y e. X ) -> U e. Fin ) |
| 10 | 2 | ad2antrr | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> D e. ( Met ` X ) ) |
| 11 | difssd | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> ( X \ k ) C_ X ) |
|
| 12 | 4 | adantr | |- ( ( ph /\ y e. X ) -> U C_ J ) |
| 13 | 12 | sselda | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> k e. J ) |
| 14 | elssuni | |- ( k e. J -> k C_ U. J ) |
|
| 15 | 13 14 | syl | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> k C_ U. J ) |
| 16 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 17 | 2 16 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 18 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 19 | 17 18 | syl | |- ( ph -> X = U. J ) |
| 20 | 19 | ad2antrr | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> X = U. J ) |
| 21 | 15 20 | sseqtrrd | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> k C_ X ) |
| 22 | eleq1 | |- ( k = X -> ( k e. U <-> X e. U ) ) |
|
| 23 | 22 | notbid | |- ( k = X -> ( -. k e. U <-> -. X e. U ) ) |
| 24 | 7 23 | syl5ibrcom | |- ( ph -> ( k = X -> -. k e. U ) ) |
| 25 | 24 | necon2ad | |- ( ph -> ( k e. U -> k =/= X ) ) |
| 26 | 25 | adantr | |- ( ( ph /\ y e. X ) -> ( k e. U -> k =/= X ) ) |
| 27 | 26 | imp | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> k =/= X ) |
| 28 | pssdifn0 | |- ( ( k C_ X /\ k =/= X ) -> ( X \ k ) =/= (/) ) |
|
| 29 | 21 27 28 | syl2anc | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> ( X \ k ) =/= (/) ) |
| 30 | eqid | |- ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) = ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
|
| 31 | 30 | metdsre | |- ( ( D e. ( Met ` X ) /\ ( X \ k ) C_ X /\ ( X \ k ) =/= (/) ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> RR ) |
| 32 | 10 11 29 31 | syl3anc | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> RR ) |
| 33 | 30 | fmpt | |- ( A. y e. X inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. RR <-> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> RR ) |
| 34 | 32 33 | sylibr | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> A. y e. X inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. RR ) |
| 35 | simplr | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> y e. X ) |
|
| 36 | rsp | |- ( A. y e. X inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. RR -> ( y e. X -> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. RR ) ) |
|
| 37 | 34 35 36 | sylc | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. RR ) |
| 38 | 9 37 | fsumrecl | |- ( ( ph /\ y e. X ) -> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. RR ) |
| 39 | 5 | eleq2d | |- ( ph -> ( y e. X <-> y e. U. U ) ) |
| 40 | 39 | biimpa | |- ( ( ph /\ y e. X ) -> y e. U. U ) |
| 41 | eluni2 | |- ( y e. U. U <-> E. m e. U y e. m ) |
|
| 42 | 40 41 | sylib | |- ( ( ph /\ y e. X ) -> E. m e. U y e. m ) |
| 43 | 0red | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> 0 e. RR ) |
|
| 44 | simplr | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> y e. X ) |
|
| 45 | eqid | |- ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) = ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) |
|
| 46 | 45 | metdsval | |- ( y e. X -> ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) = inf ( ran ( z e. ( X \ m ) |-> ( y D z ) ) , RR* , < ) ) |
| 47 | 44 46 | syl | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) = inf ( ran ( z e. ( X \ m ) |-> ( y D z ) ) , RR* , < ) ) |
| 48 | 2 | ad2antrr | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> D e. ( Met ` X ) ) |
| 49 | difssd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( X \ m ) C_ X ) |
|
| 50 | 4 | ad2antrr | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> U C_ J ) |
| 51 | simprl | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> m e. U ) |
|
| 52 | 50 51 | sseldd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> m e. J ) |
| 53 | elssuni | |- ( m e. J -> m C_ U. J ) |
|
| 54 | 52 53 | syl | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> m C_ U. J ) |
| 55 | 48 16 18 | 3syl | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> X = U. J ) |
| 56 | 54 55 | sseqtrrd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> m C_ X ) |
| 57 | eleq1 | |- ( m = X -> ( m e. U <-> X e. U ) ) |
|
| 58 | 57 | notbid | |- ( m = X -> ( -. m e. U <-> -. X e. U ) ) |
| 59 | 7 58 | syl5ibrcom | |- ( ph -> ( m = X -> -. m e. U ) ) |
| 60 | 59 | necon2ad | |- ( ph -> ( m e. U -> m =/= X ) ) |
| 61 | 60 | ad2antrr | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( m e. U -> m =/= X ) ) |
| 62 | 51 61 | mpd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> m =/= X ) |
| 63 | pssdifn0 | |- ( ( m C_ X /\ m =/= X ) -> ( X \ m ) =/= (/) ) |
|
| 64 | 56 62 63 | syl2anc | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( X \ m ) =/= (/) ) |
| 65 | 45 | metdsre | |- ( ( D e. ( Met ` X ) /\ ( X \ m ) C_ X /\ ( X \ m ) =/= (/) ) -> ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) : X --> RR ) |
| 66 | 48 49 64 65 | syl3anc | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) : X --> RR ) |
| 67 | 66 44 | ffvelcdmd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) e. RR ) |
| 68 | 47 67 | eqeltrrd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> inf ( ran ( z e. ( X \ m ) |-> ( y D z ) ) , RR* , < ) e. RR ) |
| 69 | 38 | adantr | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. RR ) |
| 70 | 17 | ad2antrr | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> D e. ( *Met ` X ) ) |
| 71 | 45 | metdsf | |- ( ( D e. ( *Met ` X ) /\ ( X \ m ) C_ X ) -> ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) : X --> ( 0 [,] +oo ) ) |
| 72 | 70 49 71 | syl2anc | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) : X --> ( 0 [,] +oo ) ) |
| 73 | 72 44 | ffvelcdmd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) e. ( 0 [,] +oo ) ) |
| 74 | elxrge0 | |- ( ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) e. ( 0 [,] +oo ) <-> ( ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) e. RR* /\ 0 <_ ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) ) ) |
|
| 75 | 73 74 | sylib | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) e. RR* /\ 0 <_ ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) ) ) |
| 76 | 75 | simprd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> 0 <_ ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) ) |
| 77 | elndif | |- ( y e. m -> -. y e. ( X \ m ) ) |
|
| 78 | 77 | ad2antll | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> -. y e. ( X \ m ) ) |
| 79 | 55 | difeq1d | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( X \ m ) = ( U. J \ m ) ) |
| 80 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
| 81 | 70 80 | syl | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> J e. Top ) |
| 82 | eqid | |- U. J = U. J |
|
| 83 | 82 | opncld | |- ( ( J e. Top /\ m e. J ) -> ( U. J \ m ) e. ( Clsd ` J ) ) |
| 84 | 81 52 83 | syl2anc | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( U. J \ m ) e. ( Clsd ` J ) ) |
| 85 | 79 84 | eqeltrd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( X \ m ) e. ( Clsd ` J ) ) |
| 86 | cldcls | |- ( ( X \ m ) e. ( Clsd ` J ) -> ( ( cls ` J ) ` ( X \ m ) ) = ( X \ m ) ) |
|
| 87 | 85 86 | syl | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( ( cls ` J ) ` ( X \ m ) ) = ( X \ m ) ) |
| 88 | 78 87 | neleqtrrd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> -. y e. ( ( cls ` J ) ` ( X \ m ) ) ) |
| 89 | 45 1 | metdseq0 | |- ( ( D e. ( *Met ` X ) /\ ( X \ m ) C_ X /\ y e. X ) -> ( ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) = 0 <-> y e. ( ( cls ` J ) ` ( X \ m ) ) ) ) |
| 90 | 70 49 44 89 | syl3anc | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) = 0 <-> y e. ( ( cls ` J ) ` ( X \ m ) ) ) ) |
| 91 | 90 | necon3abid | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) =/= 0 <-> -. y e. ( ( cls ` J ) ` ( X \ m ) ) ) ) |
| 92 | 88 91 | mpbird | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) =/= 0 ) |
| 93 | 67 76 92 | ne0gt0d | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> 0 < ( ( w e. X |-> inf ( ran ( z e. ( X \ m ) |-> ( w D z ) ) , RR* , < ) ) ` y ) ) |
| 94 | 93 47 | breqtrd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> 0 < inf ( ran ( z e. ( X \ m ) |-> ( y D z ) ) , RR* , < ) ) |
| 95 | 6 | ad2antrr | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> U e. Fin ) |
| 96 | 37 | adantlr | |- ( ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) /\ k e. U ) -> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. RR ) |
| 97 | 17 | ad2antrr | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> D e. ( *Met ` X ) ) |
| 98 | 30 | metdsf | |- ( ( D e. ( *Met ` X ) /\ ( X \ k ) C_ X ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> ( 0 [,] +oo ) ) |
| 99 | 97 11 98 | syl2anc | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> ( 0 [,] +oo ) ) |
| 100 | 30 | fmpt | |- ( A. y e. X inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. ( 0 [,] +oo ) <-> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> ( 0 [,] +oo ) ) |
| 101 | 99 100 | sylibr | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> A. y e. X inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. ( 0 [,] +oo ) ) |
| 102 | rsp | |- ( A. y e. X inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. ( 0 [,] +oo ) -> ( y e. X -> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. ( 0 [,] +oo ) ) ) |
|
| 103 | 101 35 102 | sylc | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. ( 0 [,] +oo ) ) |
| 104 | elxrge0 | |- ( inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. ( 0 [,] +oo ) <-> ( inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. RR* /\ 0 <_ inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ) |
|
| 105 | 103 104 | sylib | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> ( inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. RR* /\ 0 <_ inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ) |
| 106 | 105 | simprd | |- ( ( ( ph /\ y e. X ) /\ k e. U ) -> 0 <_ inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
| 107 | 106 | adantlr | |- ( ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) /\ k e. U ) -> 0 <_ inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
| 108 | difeq2 | |- ( k = m -> ( X \ k ) = ( X \ m ) ) |
|
| 109 | 108 | mpteq1d | |- ( k = m -> ( z e. ( X \ k ) |-> ( y D z ) ) = ( z e. ( X \ m ) |-> ( y D z ) ) ) |
| 110 | 109 | rneqd | |- ( k = m -> ran ( z e. ( X \ k ) |-> ( y D z ) ) = ran ( z e. ( X \ m ) |-> ( y D z ) ) ) |
| 111 | 110 | infeq1d | |- ( k = m -> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) = inf ( ran ( z e. ( X \ m ) |-> ( y D z ) ) , RR* , < ) ) |
| 112 | 95 96 107 111 51 | fsumge1 | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> inf ( ran ( z e. ( X \ m ) |-> ( y D z ) ) , RR* , < ) <_ sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
| 113 | 43 68 69 94 112 | ltletrd | |- ( ( ( ph /\ y e. X ) /\ ( m e. U /\ y e. m ) ) -> 0 < sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
| 114 | 42 113 | rexlimddv | |- ( ( ph /\ y e. X ) -> 0 < sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
| 115 | 38 114 | elrpd | |- ( ( ph /\ y e. X ) -> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) e. RR+ ) |
| 116 | 115 8 | fmptd | |- ( ph -> F : X --> RR+ ) |