This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| Assertion | metdsre | |- ( ( D e. ( Met ` X ) /\ S C_ X /\ S =/= (/) ) -> F : X --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| 2 | n0 | |- ( S =/= (/) <-> E. z z e. S ) |
|
| 3 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 4 | 1 | metdsf | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F : X --> ( 0 [,] +oo ) ) |
| 5 | 3 4 | sylan | |- ( ( D e. ( Met ` X ) /\ S C_ X ) -> F : X --> ( 0 [,] +oo ) ) |
| 6 | 5 | adantr | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ z e. S ) -> F : X --> ( 0 [,] +oo ) ) |
| 7 | 6 | ffnd | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ z e. S ) -> F Fn X ) |
| 8 | 5 | adantr | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ ( z e. S /\ w e. X ) ) -> F : X --> ( 0 [,] +oo ) ) |
| 9 | simprr | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ ( z e. S /\ w e. X ) ) -> w e. X ) |
|
| 10 | 8 9 | ffvelcdmd | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ ( z e. S /\ w e. X ) ) -> ( F ` w ) e. ( 0 [,] +oo ) ) |
| 11 | eliccxr | |- ( ( F ` w ) e. ( 0 [,] +oo ) -> ( F ` w ) e. RR* ) |
|
| 12 | 10 11 | syl | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ ( z e. S /\ w e. X ) ) -> ( F ` w ) e. RR* ) |
| 13 | simpll | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ ( z e. S /\ w e. X ) ) -> D e. ( Met ` X ) ) |
|
| 14 | simpr | |- ( ( D e. ( Met ` X ) /\ S C_ X ) -> S C_ X ) |
|
| 15 | 14 | sselda | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ z e. S ) -> z e. X ) |
| 16 | 15 | adantrr | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ ( z e. S /\ w e. X ) ) -> z e. X ) |
| 17 | metcl | |- ( ( D e. ( Met ` X ) /\ z e. X /\ w e. X ) -> ( z D w ) e. RR ) |
|
| 18 | 13 16 9 17 | syl3anc | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ ( z e. S /\ w e. X ) ) -> ( z D w ) e. RR ) |
| 19 | elxrge0 | |- ( ( F ` w ) e. ( 0 [,] +oo ) <-> ( ( F ` w ) e. RR* /\ 0 <_ ( F ` w ) ) ) |
|
| 20 | 19 | simprbi | |- ( ( F ` w ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` w ) ) |
| 21 | 10 20 | syl | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ ( z e. S /\ w e. X ) ) -> 0 <_ ( F ` w ) ) |
| 22 | 1 | metdsle | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. S /\ w e. X ) ) -> ( F ` w ) <_ ( z D w ) ) |
| 23 | 3 22 | sylanl1 | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ ( z e. S /\ w e. X ) ) -> ( F ` w ) <_ ( z D w ) ) |
| 24 | xrrege0 | |- ( ( ( ( F ` w ) e. RR* /\ ( z D w ) e. RR ) /\ ( 0 <_ ( F ` w ) /\ ( F ` w ) <_ ( z D w ) ) ) -> ( F ` w ) e. RR ) |
|
| 25 | 12 18 21 23 24 | syl22anc | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ ( z e. S /\ w e. X ) ) -> ( F ` w ) e. RR ) |
| 26 | 25 | anassrs | |- ( ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ z e. S ) /\ w e. X ) -> ( F ` w ) e. RR ) |
| 27 | 26 | ralrimiva | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ z e. S ) -> A. w e. X ( F ` w ) e. RR ) |
| 28 | ffnfv | |- ( F : X --> RR <-> ( F Fn X /\ A. w e. X ( F ` w ) e. RR ) ) |
|
| 29 | 7 27 28 | sylanbrc | |- ( ( ( D e. ( Met ` X ) /\ S C_ X ) /\ z e. S ) -> F : X --> RR ) |
| 30 | 29 | ex | |- ( ( D e. ( Met ` X ) /\ S C_ X ) -> ( z e. S -> F : X --> RR ) ) |
| 31 | 30 | exlimdv | |- ( ( D e. ( Met ` X ) /\ S C_ X ) -> ( E. z z e. S -> F : X --> RR ) ) |
| 32 | 2 31 | biimtrid | |- ( ( D e. ( Met ` X ) /\ S C_ X ) -> ( S =/= (/) -> F : X --> RR ) ) |
| 33 | 32 | 3impia | |- ( ( D e. ( Met ` X ) /\ S C_ X /\ S =/= (/) ) -> F : X --> RR ) |