This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lebnum . As a finite sum of point-to-set distance functions, which are continuous by metdscn , the function F is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by AV, 30-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lebnum.j | |- J = ( MetOpen ` D ) |
|
| lebnum.d | |- ( ph -> D e. ( Met ` X ) ) |
||
| lebnum.c | |- ( ph -> J e. Comp ) |
||
| lebnum.s | |- ( ph -> U C_ J ) |
||
| lebnum.u | |- ( ph -> X = U. U ) |
||
| lebnumlem1.u | |- ( ph -> U e. Fin ) |
||
| lebnumlem1.n | |- ( ph -> -. X e. U ) |
||
| lebnumlem1.f | |- F = ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
||
| lebnumlem2.k | |- K = ( topGen ` ran (,) ) |
||
| Assertion | lebnumlem2 | |- ( ph -> F e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lebnum.j | |- J = ( MetOpen ` D ) |
|
| 2 | lebnum.d | |- ( ph -> D e. ( Met ` X ) ) |
|
| 3 | lebnum.c | |- ( ph -> J e. Comp ) |
|
| 4 | lebnum.s | |- ( ph -> U C_ J ) |
|
| 5 | lebnum.u | |- ( ph -> X = U. U ) |
|
| 6 | lebnumlem1.u | |- ( ph -> U e. Fin ) |
|
| 7 | lebnumlem1.n | |- ( ph -> -. X e. U ) |
|
| 8 | lebnumlem1.f | |- F = ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
|
| 9 | lebnumlem2.k | |- K = ( topGen ` ran (,) ) |
|
| 10 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 11 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 12 | 2 11 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 13 | 1 | mopntopon | |- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 14 | 12 13 | syl | |- ( ph -> J e. ( TopOn ` X ) ) |
| 15 | 2 | adantr | |- ( ( ph /\ k e. U ) -> D e. ( Met ` X ) ) |
| 16 | difssd | |- ( ( ph /\ k e. U ) -> ( X \ k ) C_ X ) |
|
| 17 | 12 | adantr | |- ( ( ph /\ k e. U ) -> D e. ( *Met ` X ) ) |
| 18 | 17 13 | syl | |- ( ( ph /\ k e. U ) -> J e. ( TopOn ` X ) ) |
| 19 | 4 | sselda | |- ( ( ph /\ k e. U ) -> k e. J ) |
| 20 | toponss | |- ( ( J e. ( TopOn ` X ) /\ k e. J ) -> k C_ X ) |
|
| 21 | 18 19 20 | syl2anc | |- ( ( ph /\ k e. U ) -> k C_ X ) |
| 22 | eleq1 | |- ( k = X -> ( k e. U <-> X e. U ) ) |
|
| 23 | 22 | notbid | |- ( k = X -> ( -. k e. U <-> -. X e. U ) ) |
| 24 | 7 23 | syl5ibrcom | |- ( ph -> ( k = X -> -. k e. U ) ) |
| 25 | 24 | necon2ad | |- ( ph -> ( k e. U -> k =/= X ) ) |
| 26 | 25 | imp | |- ( ( ph /\ k e. U ) -> k =/= X ) |
| 27 | pssdifn0 | |- ( ( k C_ X /\ k =/= X ) -> ( X \ k ) =/= (/) ) |
|
| 28 | 21 26 27 | syl2anc | |- ( ( ph /\ k e. U ) -> ( X \ k ) =/= (/) ) |
| 29 | eqid | |- ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) = ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
|
| 30 | 29 1 10 | metdscn2 | |- ( ( D e. ( Met ` X ) /\ ( X \ k ) C_ X /\ ( X \ k ) =/= (/) ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 31 | 15 16 28 30 | syl3anc | |- ( ( ph /\ k e. U ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 32 | 10 14 6 31 | fsumcn | |- ( ph -> ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 33 | 8 32 | eqeltrid | |- ( ph -> F e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 34 | 10 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 35 | 34 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 36 | 1 2 3 4 5 6 7 8 | lebnumlem1 | |- ( ph -> F : X --> RR+ ) |
| 37 | 36 | frnd | |- ( ph -> ran F C_ RR+ ) |
| 38 | rpssre | |- RR+ C_ RR |
|
| 39 | 37 38 | sstrdi | |- ( ph -> ran F C_ RR ) |
| 40 | ax-resscn | |- RR C_ CC |
|
| 41 | 40 | a1i | |- ( ph -> RR C_ CC ) |
| 42 | cnrest2 | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran F C_ RR /\ RR C_ CC ) -> ( F e. ( J Cn ( TopOpen ` CCfld ) ) <-> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
|
| 43 | 35 39 41 42 | syl3anc | |- ( ph -> ( F e. ( J Cn ( TopOpen ` CCfld ) ) <-> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
| 44 | 33 43 | mpbid | |- ( ph -> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 45 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 46 | 9 45 | eqtri | |- K = ( ( TopOpen ` CCfld ) |`t RR ) |
| 47 | 46 | oveq2i | |- ( J Cn K ) = ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 48 | 44 47 | eleqtrrdi | |- ( ph -> F e. ( J Cn K ) ) |