This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994) (Proof shortened by Wolf Lammen, 30-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difin0ss | |- ( ( ( A \ B ) i^i C ) = (/) -> ( C C_ A -> C C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 | |- ( ( ( A \ B ) i^i C ) = (/) <-> A. x -. x e. ( ( A \ B ) i^i C ) ) |
|
| 2 | iman | |- ( ( x e. C -> ( x e. A -> x e. B ) ) <-> -. ( x e. C /\ -. ( x e. A -> x e. B ) ) ) |
|
| 3 | elin | |- ( x e. ( ( A \ B ) i^i C ) <-> ( x e. ( A \ B ) /\ x e. C ) ) |
|
| 4 | eldif | |- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
|
| 5 | 4 | anbi2ci | |- ( ( x e. ( A \ B ) /\ x e. C ) <-> ( x e. C /\ ( x e. A /\ -. x e. B ) ) ) |
| 6 | annim | |- ( ( x e. A /\ -. x e. B ) <-> -. ( x e. A -> x e. B ) ) |
|
| 7 | 6 | anbi2i | |- ( ( x e. C /\ ( x e. A /\ -. x e. B ) ) <-> ( x e. C /\ -. ( x e. A -> x e. B ) ) ) |
| 8 | 3 5 7 | 3bitri | |- ( x e. ( ( A \ B ) i^i C ) <-> ( x e. C /\ -. ( x e. A -> x e. B ) ) ) |
| 9 | 2 8 | xchbinxr | |- ( ( x e. C -> ( x e. A -> x e. B ) ) <-> -. x e. ( ( A \ B ) i^i C ) ) |
| 10 | ax-2 | |- ( ( x e. C -> ( x e. A -> x e. B ) ) -> ( ( x e. C -> x e. A ) -> ( x e. C -> x e. B ) ) ) |
|
| 11 | 9 10 | sylbir | |- ( -. x e. ( ( A \ B ) i^i C ) -> ( ( x e. C -> x e. A ) -> ( x e. C -> x e. B ) ) ) |
| 12 | 11 | al2imi | |- ( A. x -. x e. ( ( A \ B ) i^i C ) -> ( A. x ( x e. C -> x e. A ) -> A. x ( x e. C -> x e. B ) ) ) |
| 13 | df-ss | |- ( C C_ A <-> A. x ( x e. C -> x e. A ) ) |
|
| 14 | df-ss | |- ( C C_ B <-> A. x ( x e. C -> x e. B ) ) |
|
| 15 | 12 13 14 | 3imtr4g | |- ( A. x -. x e. ( ( A \ B ) i^i C ) -> ( C C_ A -> C C_ B ) ) |
| 16 | 1 15 | sylbi | |- ( ( ( A \ B ) i^i C ) = (/) -> ( C C_ A -> C C_ B ) ) |