This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of _pi is -u 1 . (Contributed by Paul Chapman, 23-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cospi | |- ( cos ` _pi ) = -u 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | |- _pi e. CC |
|
| 2 | 2cn | |- 2 e. CC |
|
| 3 | 2ne0 | |- 2 =/= 0 |
|
| 4 | 1 2 3 | divcli | |- ( _pi / 2 ) e. CC |
| 5 | cos2t | |- ( ( _pi / 2 ) e. CC -> ( cos ` ( 2 x. ( _pi / 2 ) ) ) = ( ( 2 x. ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) - 1 ) ) |
|
| 6 | 4 5 | ax-mp | |- ( cos ` ( 2 x. ( _pi / 2 ) ) ) = ( ( 2 x. ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) - 1 ) |
| 7 | 1 2 3 | divcan2i | |- ( 2 x. ( _pi / 2 ) ) = _pi |
| 8 | 7 | fveq2i | |- ( cos ` ( 2 x. ( _pi / 2 ) ) ) = ( cos ` _pi ) |
| 9 | coshalfpi | |- ( cos ` ( _pi / 2 ) ) = 0 |
|
| 10 | 9 | oveq1i | |- ( ( cos ` ( _pi / 2 ) ) ^ 2 ) = ( 0 ^ 2 ) |
| 11 | sq0 | |- ( 0 ^ 2 ) = 0 |
|
| 12 | 10 11 | eqtri | |- ( ( cos ` ( _pi / 2 ) ) ^ 2 ) = 0 |
| 13 | 12 | oveq2i | |- ( 2 x. ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) = ( 2 x. 0 ) |
| 14 | 2t0e0 | |- ( 2 x. 0 ) = 0 |
|
| 15 | 13 14 | eqtri | |- ( 2 x. ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) = 0 |
| 16 | 15 | oveq1i | |- ( ( 2 x. ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) - 1 ) = ( 0 - 1 ) |
| 17 | df-neg | |- -u 1 = ( 0 - 1 ) |
|
| 18 | 16 17 | eqtr4i | |- ( ( 2 x. ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) - 1 ) = -u 1 |
| 19 | 6 8 18 | 3eqtr3i | |- ( cos ` _pi ) = -u 1 |